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A B S T R A C T

Nematic liquid crystals offer a rich playground to explore the nonlinear interaction between light and matter.
This richness is significantly expanded when nematic liquid crystals are doped with chiral molecules. In simple
words, a favorable twist is introduced at a mesoscopic scale in the system, which is manifested through
a characteristic length scale, the helical pitch. A classical controlled experiment to observe the response of
chiral nematic liquid crystals to external stimuli, is to fill a liquid crystal cell and apply a continuous electrical
current. The aftermath will depend on a balance between the elastic and electric properties of the material,
the amplitude and frequency of the electric signal, and the competition between the helical pitch and the
cell thickness. Although this balance have been studied experimentally and numerically to some extent, the
theoretical side of it has been underexplored. In this work, using weakly nonlinear analysis, we derive from
first principles a supercritical Ginzburg–Landau type of equation, enabling us to determine theoretically the
intricate balance between physical properties that govern the emergence of some chiral textures in the system.
Specifically, we focus on how positive and negative vortex solutions of a real cubic Ginzburg–Landau equation
are affected by the presence of chirality. We use numerical simulations to show that +1 vortices undergo
isotropic stretching, while -1 vortices experience anisotropic deformation, which can be inferred from the
free energy of the system. These deformations are in agreement with previous experimental observations.
Additionally, we show that it is possible to break the monotonous spatial profile of positive vortices in the
presence of chirality.
1. Introduction

Liquid crystals are a state of matter exhibiting properties of both
liquids and solids, and at room temperature they usually exhibit a
nematic phase, where their anisotropic constituents, molecules, are
characterized by a long-range orientational order, but not a positional
one [1,2]. This nematic order is commonly described by a nematic
director 𝑛, which accounts for the average orientation of the molecules.
Liquid crystals have served as an ideal physical system for studying self-
organization in response to diverse external stimuli [3]. In the field
of nonlinear optics, experimental setups have been built to leverage
the nonlinear response of nematic liquid crystal materials to light. An
iconic experiment is the liquid crystal light valve with optical feedback,
which has allowed to explore the formation of patterns [4], bistability
between localized structures [5], and the localization of spatiotemporal
chaos [6], to mention a few. Moreover, the interest in learning how
to control localized structures with light has led physicists to propose
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experimental and theoretical studies based on the unique properties
of the nematic liquid crystals. For example, controlling the interplay
between diffraction and nonlinearities in this medium have allowed to
investigate the interaction and stabilization of optical solitons, or ne-
maticons [7–9]. Recent studies have shown that the nonlinear response
of the nematic liquid crystals can be enhanced by doping the system
with chiral molecules [10], and thus, breaking the mirror symmetry
in the medium [11]. Other theoretical investigations have focused in
understanding the role of the nonlocal reorientational dynamics in the
localization of beams in a nonlinear optical ring cavity filled with
nematic liquid crystal [12], and also in studying the orientational
effects of liquid crystals in Fabry–Perot resonators [13].

Although the interaction of nematic liquid crystals with light has
received a lot of attention, other type of perturbations can reveal
the abundant different phases of this material [3,14]. In particular,
a typical experimental configuration is to sandwich a nematic liq-
uid crystal, with negative dielectric anisotropy, between two glasses
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coated to enforce a boundary condition such that the equilibrium
configuration of the nematic director is uniformly perpendicular to
the two glasses (homeotropic anchoring). Then, a sufficiently high
electric voltage can be applied in the nematic liquid crystal cell to trig-
ger local reorientations of the nematic order, Fréedericksz transition,
generating non-smooth distributions of the nematic director field 𝑛(𝑟),
where 𝑟 = (𝑥, 𝑦, 𝑧) is a vector describing position [15]. This texture,
which has fascinated the liquid crystal community over decades [16],
is called Schlieren and is characterized by displaying disclinations
with positive and negatives topological charges [17], which have been
also introduced as umbilical defects by Rapini [18], who described
these defects in terms of the elastic constants governing the allowed
deformations in the nematic phase: splay, bend, and twist [19,20].
Notably, the presence of defects is a transient, which is governed by
the minimization of the elastic energy in the system by annihilating
pair of defects with different sign through a coarsening process [21–
23]. The evolution of these dissipative vortices can be influenced by
heterogeneities [24], magnetic fields [25], thermal fluctuations [26],
and the frequency of the applied voltage [27–29]. Most importantly for
our present work, all of these experimental situations can be fairly well-
described with two-dimensional Ginzburg–Landau equations, which are
valid in the vicinity of the reorientational instability [30–32]. These
equations govern the evolution of a complex field 𝐴(𝑥, 𝑦) representing
the orientation of the 2D projection of the nematic director. The
Ginzburg–Landau equations extend well beyond the realm of liquid
crystals, in fact, these minimal models arise close to modulational
or oscillatory instabilities across different areas of physics and have
been extensively studied over the past decades [33–36]. We will be
interested in the topological particle-like solutions of real Ginzburg–
Landau equations, which are characterized by their ±2𝜋 phase jump
surrounding a zero of the complex field 𝐴. The sign of this phase
singularity, when considering a closed trajectory around it, assigns a
topological charge to these solutions. A positive (counterclockwise)
jump gives a charge of +1 and a negative (clockwise) one a charge
of −1.

As we have already mentioned, adding chiral molecules to ne-
matic liquid crystals can modify the properties of the mixture and,
as expected, the possible phases and dynamics in the system [1,3,17].
Indeed, the inclusion of chiral dopants can cause a spontaneous twist in
the nematic phase [37], resulting in a helical structure of the director
𝑛(𝑟). A key signature of this phase is the pitch 𝑝, which accounts for
the distance needed for the nematic director to complete a 2𝜋 rotation.
This length scale is the mesoscopic manifestation of the molecular
chirality [38]. When subjected to homeotropic boundary conditions,
the twisted (wound) phase becomes frustrated and is replaced by a
nematic (unwound) phase [39,40]. In this scenario, the twisted phase
is known as transitionally invariant configuration (TIC), and it can
be recovered by applying a sufficiently high voltage [41,42]. Fig. 1A
and B illustrate schematic representations of the experimental setup
under consideration and the distribution of the nematic director in the
TIC phase, respectively. Similar to the Fréedericksz transition for pure
nematics, the bifurcation from the frustrated nematic phase (where
all molecules are vertically oriented) into the TIC is mediated by the
emergence of dissipative vortices, driven by an annihilation dynamics
between umbilical defects affected by chiral effects. Despite systematic
explorations of the rich number of topological textures exhibited by chi-
ral nematic liquid crystals [43–47], such as cholesteric fingers and their
instabilities [48–52], fewer studies have focused in the study of umbil-
ics under the influence of chiral effects. To our knowledge, there is only
one previous experimental work that addresses this issue [53]. In that
study, the authors show that defects can undergo an anisotropic elon-
gation and an isotropic shrinking (or expansion), depending on their
topological charge. However, there is no systematic quantification of
how those changes in shape can be controlled. A pair of phenomenolog-
ical models have been proposed to study the consequences of chirality
in nematic liquid crystals [53,54], suggesting that these effects are
2 
Fig. 1. Experimental setup. (A) Schematic representation of a classic voltage driven
experiment, where a chiral nematic liquid crystal, inside a cell treated to induce
homeotropic anchoring at their surface, experiences controlled electrical variations.
The resulting dynamics can be visualized with polarized optical microscopy techniques.
The figure shows a crossed polarizer (polarizer-analizer) configuration. (B) Schematic
representation of the director configuration 𝑛 in the TIC phase. The angles 𝛼 and 𝜃
correspond to the tilt angle of the director with respect to the 𝑧-axis, and the angle
between the 𝑥-axis and the projection of 𝑛 in the 𝑥-𝑦 plane, respectively.

governed only by the cholesteric pitch. Nowadays, understanding how
chiral effects can be controlled and how they quantitatively affect the
shape of vortices could be valuable for patterning light through chiral
vortex arrays [55]. In this work, we address theoretically the effects of
electrical forcing in frustrated chiral nematic liquid crystals by deriving
a supercritical chiral-anisotropic Ginzburg–Landau equation from first
principles through a weakly nonlinear analysis. We show how a balance
between voltage, geometric frustration and elasticity controls chiral
effects in specific experimental scenarios. We numerically investigate
the consequences of the mirror symmetry breaking in the spatial struc-
ture of positive and negative Ginzburg–Landau vortices, reproducing
previous experimental observations. Finally, we give some future per-
spectives of possible applications of our theory in experiments, and also
propose future theoretical directions.

2. Theoretical results

2.1. Dissipative dynamics in chiral nematic liquid crystals

To shed light in the shape of dissipative vortices in frustrated chiral
nematic liquid crystals at fixed temperature under the forcing of an
electric field, we start from a well-established continuum theory. We
assume that in a weakly distorted regime (small spatial variations of
𝑛(𝑟)), the local properties of the material are the ones of a uniaxial
liquid crystal [1]. This assumption allows to write a Frank-Oseen type
of free energy for chiral nematics [1–3]

 [𝑛,∇𝑛] = ∫

[

𝐾1
2
(∇ ⋅ 𝑛)2 +

𝐾2
2
(𝑛 ⋅ ∇ × 𝑛 + 2𝜋∕𝑝)2

+
𝐾3
2
(𝑛 × ∇ × 𝑛)2 − 𝜖𝑎(�⃗� ⋅ 𝑛)2

]

𝑑 ⃗𝑟,
(1)

where 𝐾1, 𝐾2, and 𝐾3 are elastic constants associated to the splay,
twist, and bend deformation modes, respectively. The cholesteric pitch
𝑝 needs to be big, compared to a molecular scale 𝑙, so the supposition of
uniaxiality remains valid [37]. 𝜖𝑎 is the dielectric anisotropic constant,
which we consider to be negative (𝜖𝑎 < 0), i.e., the chiral nematic liquid
crystal molecules will try to be perpendicular to the electric field. The
latter is considered to be oriented in the 𝑧-direction and is controlled
by an external voltage; �⃗� = 𝑉 ∕𝑑 ̂𝑧, where 𝑑 is the thickness of the cell.
The cell is assumed to have a square shape in the 𝑥–𝑦 plane, with a
size 𝐿 ≫ {𝑑 , 𝑝}. We have neglected the contribution of saddle-splay
deformations in Eq. (1) by assuming that the liquid crystal cell imposes
a strong anchoring at its boundaries [56].
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To account for the dynamics of the chiral nematic liquid crystal
ithin the cell, we introduce a concrete experimental scenario. We con-

sider the nematic liquid crystal MLC-6609 mixed with the chiral dopant
LI-811, confined within a cell of thickness 𝑑 ≤ 10 μm, and subjected
o a voltage amplitude of up to 4 V at a high frequency (>1 kHz).
articularly, previous studies have shown that this material, under such
orcing, does not exhibit relevant hydrodynamic effects [57,58], which
ould be important in other circumstances [59]. Moreover, operating

in the high frequency regime should avoid inertial effects, such as elec-
troconvection, charge currents, and material flows [58,60]. Therefore,
it is reasonable to assume purely dissipative dynamics when electrical
energy is injected into the system [61]. This dynamic behavior can be
modeled by a minimization process given by the temporal evolution of
the nematic director field

𝛾 𝑑 ⃗𝑛
𝑑 𝑡 = − 𝛿

𝛿 ⃗𝑛 + 𝑛
(

𝑛 ⋅ 𝛿
𝛿 ⃗𝑛

)

, (2)

where 𝛾 is a rotational viscosity constant. The last term ensures the
maintenance of the unitary norm |𝑛|2 = 1 [61]. Replacing the free
nergy Eq. (1) into Eq. (2), one gets

𝛾 𝑑 ⃗𝑛
𝑑 𝑡 = 𝐾3[∇2𝑛 − 𝑛(𝑛 ⋅ ∇2𝑛)] + (𝐾3 −𝐾1)[𝑛(𝑛 ⋅ ∇)(∇ ⋅ 𝑛) − ∇(∇ ⋅ 𝑛)]

+ (𝐾2 −𝐾3)[2(𝑛 ⋅ ∇ × 𝑛){𝑛(𝑛 ⋅ ∇ × 𝑛) − ∇ × 𝑛} + 𝑛 × ∇(𝑛 ⋅ ∇ × 𝑛)]
+

4𝜋 𝐾2
𝑝

[−∇ × 𝑛 + 𝑛(𝑛 ⋅ ∇ × 𝑛)] − 𝜖𝑎[𝑛 ⋅ �⃗�(𝑛(𝑛 ⋅ �⃗�) − �⃗�)], (3)

with the boundary conditions 𝑛 = �̂� at 𝑧 = 0 and 𝑧 = 𝑑 (homeotropic
nchoring), and periodic boundary conditions in the lateral directions.
he latter is a reasonable assumption given that 𝐿 ≫ 𝑑.

We begin by analyzing the linear regime of Eq. (3). Particularly, we
perturb the frustrated nematic phase 𝑛𝑜 = �̂� with small perturbations of
the form 𝑛 = (𝑛1, 𝑛2,

√

1 − 𝑛21 − 𝑛22), obtaining

𝛾
𝜕 𝑛1
𝜕 𝑡 = 𝐾3𝜕𝑧𝑧𝑛1 +

4𝜋 𝐾2
𝑝

𝜕𝑧𝑛2 − 𝜖𝑎
𝑉 2

𝑑2
𝑛1, (4)

𝛾
𝜕 𝑛2
𝜕 𝑡 = 𝐾3𝜕𝑧𝑧𝑛2 −

4𝜋 𝐾2
𝑝

𝜕𝑧𝑛1 − 𝜖𝑎
𝑉 2

𝑑2
𝑛2. (5)

Notice that the third component of the perturbation was restrained due
to the norm conservation. To find the conditions in which the frus-
trated nematic will bifurcate into the TIC phase, winding/unwinding
transition, we introduce the ansatz 𝑛1 = 𝛼𝑜 cos(𝑓 𝑧) sin(𝜋 𝑧∕𝑑)𝑒𝜎 𝑡 and
2 = 𝛼𝑜 sin(𝑓 𝑧) sin(𝜋 𝑧∕𝑑)𝑒𝜎 𝑡 [54,62]. These linear modes satisfy the

homeotropic boundary conditions and consider the frustrated rotation,
at rate 𝑓 , induced by the chiral term (∼ 𝑝−1) inside the liquid crystal
ell. 𝛼𝑜 is a constant and 𝜎 is the linear growth rate of the perturbation.
e introduce the ansatz for 𝑛1 and 𝑛2 into Eqs. (4) and (5), set the

condition 𝜎 = 0, and get the critical voltage for the reorientational
instability 𝑉 2

𝑐 = 𝑑2
[

4𝜋 𝐾2𝑓𝑐∕𝑝 − (𝑓 2
𝑐 + 𝜋2∕𝑑2)𝐾3

]

∕𝜖𝑎 as a function of the
thickness 𝑑 and the critical frustrated rotation 𝑓𝑐 = 2𝜋 𝐾2∕𝑝𝐾3. A more
compact definition for the critical voltage at the bifurcation is

𝑉𝑐 = 𝑉𝑓

(

1 −
4𝐾2

2
2

𝐾2
3

)1∕2

, (6)

where  = 𝑑∕𝑝 is the confinement ratio (geometric frustration) and
𝑉𝑓 = 𝜋

√

𝐾3∕|𝜖𝑎| is the Freedericksz voltage [15]. This voltage accounts
for the reorientational instability of pure nematic liquid crystals. The
voltage-confinement relationship has been derived before through dif-
ferent techniques [3,41,63]. Note that Eq. (6) implies that chirality
decreases the voltage necessary to trigger the TIC phase from the
nematic. Additionally, the thickness must satisfy 𝑑 < 𝐾3𝑝∕2𝐾2. This
an be understood by thinking that if the thickness of the cell is too
arge, then, there is no frustration of the chiral phase in the first place.

Also, notice that in the limit 𝑝→ ∞; 𝑉𝑐 ≈ 𝑉𝑓 . It is important to highlight
hat we are assuming that the thickness 𝑑 is constant for this analysis,

nd the only bifurcation parameter is the voltage.

3 
2.2. Weakly nonlinear analysis of the winding/unwinding transition

Close to the critical voltage 𝑉𝑐 , we perform a weakly nonlinear
analysis to find the slow dynamics of the director 𝑛(𝑟, 𝑡) near the double
critical point. In such nonlinear regime, we need to take into account
the 𝑥−𝑦 dependence of 𝑛1 and 𝑛2. A simple way to consider this spatial
dependence near the bifurcation is by introducing the following ansatz
for the director field [49,51,54,62]

⎛

⎜

⎜

⎜

⎝

𝑛1
𝑛2
𝑛3

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

cos
(

𝑓𝑐𝑧 + 𝜃
)

sin
(

𝛼 sin
(𝜋 𝑧
𝑑

))

sin
(

𝑓𝑐𝑧 + 𝜃
)

sin
(

𝛼 sin
(𝜋 𝑧
𝑑

))

cos
(

𝛼 sin
(𝜋 𝑧
𝑑

))

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (7)

where 𝛼 and 𝜃 correspond to the angle tilt of 𝑛 from the 𝑧-axis, and the
ngle between the 𝑥-axis and the projection of 𝑛 into the 𝑥–𝑦 plane, re-
pectively (see Fig. 1B). Both 𝛼 and 𝜃 are slowly varying spatiotemporal

variables. In the limit 𝛼 ≪ 1, one can introduce the small complex order
parameter 𝐴(𝑥, 𝑦, 𝑡) = 𝛼 𝑒𝑖𝜃 = 𝑢+ 𝑖𝑣 to characterize the behavior of chiral
nematic liquid crystals close to the winding/unwinding transition [54].
We can rewrite Eq. (7) as a function of 𝑢 and 𝑣 by expanding the
components of 𝑛 in the limit 𝛼 ≪ 1:

⎛

⎜

⎜

⎜

⎝

𝑛1
𝑛2
𝑛3

⎞

⎟

⎟

⎟

⎠

≈

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑢 cos
(

𝑓𝑐𝑧
)

sin
(𝜋 𝑧
𝑑

)

− 𝑣 sin
(

𝑓𝑐𝑧
)

sin
(𝜋 𝑧
𝑑

)

+𝑊 [3]
1 +⋯

𝑣 cos
(

𝑓𝑐𝑧
)

sin
(𝜋 𝑧
𝑑

)

+ 𝑢 sin
(

𝑓𝑐𝑧
)

sin
(𝜋 𝑧
𝑑

)

+𝑊 [3]
2 +⋯

1 −
𝑛21
2

−
𝑛22
2

+⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (8)

where �⃗� [3] = (𝑊 [3]
1 , 𝑊 [3]

2 ) are higher nonlinear corrections of cubic
rder and the ellipsis indicates even higher nonlinear corrections. Then,
fter substituting this ansatz into Eq. (3), we obtain the following linear

problem
⎛

⎜

⎜

⎜

⎝

𝐾3𝜕𝑧𝑧
4𝜋 𝐾2
𝑝

𝜕𝑧

−
4𝜋 𝐾2
𝑝

𝜕𝑧 𝐾3𝜕𝑧𝑧

⎞

⎟

⎟

⎟

⎠

(

𝑊 [3]
1

𝑊 [3]
2

)

=

(

𝑏1
𝑏2

)

, (9)

where the 2 × 2 matrix is a linear operator, , and the right hand side
vector �⃗� = (𝑏1, 𝑏2) contains all the other terms coming from Eq. (3).

o solve Eq. (9), we need to introduce an inner product to apply a
solvability condition, i.e., the linear equation will have solution if and
only if �⃗� is orthogonal to the elements of 𝐾 𝑒𝑟{†}. We consider the
inner product ⟨𝑔|ℎ⃗⟩ = ∫ 𝑑0 𝑔 ⋅ ℎ⃗𝑑 𝑧, noting that, under this inner product,
the linear operator is self-adjoint, i.e.,  = †. The elements of the
kernel of the self-adjoint operator are

𝐾 𝑒𝑟{†} =
{(

cos(𝑓𝑐𝑧) sin(𝜋 𝑧∕𝑑)
sin(𝑓𝑐𝑧) sin(𝜋 𝑧∕𝑑)

)

,

(

sin(𝑓𝑐𝑧) sin(𝜋 𝑧∕𝑑)
− cos(𝑓𝑐𝑧) sin(𝜋 𝑧∕𝑑)

)}

. (10)

After imposing the two solvability conditions and straightforward cal-
culations, we obtain the amplitude equation
𝛾

2𝐾2
𝜕𝑡𝐴 = 𝜋2

2𝑑2

(

4𝐾232 −𝐾32 −
𝜖𝑎𝑉 2

𝜋2𝐾2

)

𝐴

+ 𝜋2

4𝑑2

(

3𝜖𝑎𝑉 2

2𝜋2𝐾2
−𝐾12 + 3

(

22𝐾23 − 42𝐾2
23 +

𝐾32
2

))

× |𝐴|2𝐴 +
𝐾12 + 1

4
∇2𝐴 −

1 −𝐾12
8𝜋

𝜋2 sin(2𝑞)
2𝐾23 − 83𝐾3

23

𝜕𝜂𝜕𝜂�̄�

+ 4𝜋3
𝑑

(𝑞)(6𝜋 + 𝑞(3 +𝐾12 − 4𝐾32))(𝐴𝜕�̄�𝐴 − �̄�𝜕𝜂𝐴), (11)

where 𝜕𝜂 = 𝜕𝑥 + 𝑖𝜕𝑦 is the Wirtinger derivative, (𝑞) = sin(𝑞)∕(𝑞4 −
0𝜋2𝑞2 + 9𝜋4), 𝑞 = 2𝜋𝐾23, 𝐾12 = 𝐾1∕𝐾2 and 𝐾32 = 𝐾3∕𝐾2. �̄� and
�̄� correspond to the complex conjugate of 𝐴 and 𝜕𝜂 , respectively. We
escale time 𝜕𝑇 = (𝛾 𝑑2∕𝐾2𝜋2)𝜕𝑡, space 𝜕𝜂 = (𝑑√1 +𝐾12∕

√

2𝜋)𝜕𝜂 and the
complex field

�̃� =

√

1
(

𝐾12 −
3𝜖𝑎𝑉 2

− 3
(

22𝐾23 − 42𝐾2 +
𝐾32

))

𝐴, (12)

2 2𝜋2𝐾2

23 2
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obtaining the supercritical chiral-anisotropic Ginzburg–Landau equa-
tion

𝜕𝑇𝐴 = 𝜇 𝐴 − |𝐴|2𝐴 + ∇̃2𝐴 − 𝛿𝜕𝜂𝜕𝜂�̄� + 𝜒(𝐴𝜕�̄�𝐴 − �̄�𝜕𝜂𝐴), (13)

where, for simplicity in the notation, we have redefined �̃� as 𝐴. When
rescaling the complex field, we have assumed that the scaling factor in
Eq. (12) is positive and (1). A similar equation, but cubic-quintic, has
been derived when frustrated chiral nematic liquid crystals are purely
driven by temperature [51,62].

The three parameters introduced in Eq. (13) are: the bifurcation
parameter 𝜇 = 4𝐾232−𝐾32−𝜖𝑎𝑉 2∕𝜋2𝐾2, which controls the departure
from the critical voltage 𝑉𝑐 , the anisotropic parameter

𝛿 =
1 −𝐾12
1 +𝐾12

𝜋 sin(2𝑞)
4𝐾23 − 163𝐾3

23

, (14)

and the chiral parameter controlling the breaking of mirror symmetry

𝜒 =
16𝜋2(𝑞)
√

1 +𝐾12

6𝜋 + 𝑞(3 +𝐾12 − 4𝐾32)
(

𝐾12 −
3𝜖𝑎𝑉 2

2𝜋2𝐾2
− 3

(

22𝐾23 − 42𝐾2
23 +

𝐾32
2

))1∕2
. (15)

Note that, in the meaningful physical interpretation of our argument,
i.e., 0 < 𝑑 < 𝐾3𝑝∕2𝐾2; 0 < 𝑞 < 𝜋. This means that the term 𝑄(𝑞)
in Eq. (15) never vanishes. However, the term sin(2𝑞) in Eq. (14) can
vanish at certain confinement,  = 𝐾32∕4, allowing the sign of 𝛿 to
change as a function of . We highlight that as Eq. (13) is formally
derived from a weakly nonlinear analysis, it obeys an appropriate
scaling: 𝜕𝑇 ∼ ∇̃2 ∼ |𝐴|2 ∼ 𝜇 ∼ 𝜖, with 𝜖 a small parameter (≪ 1).
Namely, for a small bifurcation parameter, the 2D projection of the
director dynamics, Eq. (3), is described by Eq. (13).

2.3. Calculation of the chiral parameter

The expression for the chiral parameter is not straightforward to
analyze. Therefore, it is worth to explore different experimental sce-
narios (see Table 1), particularly varying confinements  and voltages
𝑉 , which are more easily controlled in experiments, compared to the
elastic and electric properties of the material. Fig. 2A shows how 𝜒
varies as a function of  < 𝐾32∕2 and 𝑉 when considering the nematic
host MLC-6609. The red solid curve represents Eq. (6) and the gray
area indicates the region where 𝑉 < 𝑉𝑐 . The white area illustrates
the region of parameter where the expression under the square root
in Eq. (15) is negative, which means that a quintic nonlinearity will
be needed to saturate the instability. It can be seen that chiral effects
become strong with increasing confinement and with voltages near
the critical curve 𝑉𝑐 . Rather than focusing solely in the experimental
situation described in the Introduction section, we also checked how
the parameter 𝜒 behaves when considering the nematic hosts ZLI-2806
and MBBA (see Fig. 2B–C, respectively). Between MLC-6609 and ZLI-
2806 there is almost no difference. On the other hand, MBBA exhibits
a bigger 𝑉𝑐 towards smaller confinements and the white area is bigger.
Although, we cannot ensure that hydrodynamic and inertial effects are
relevant or not when considering MBBA as a nematic host, the similar-
ities between experimental observations and numerical integrations of
Eq. (13), detailed in the next section, are fairly good [53]. Additionally,
we illustrate how the chiral parameter behaves when considering a
chiral nematic liquid crystal in the one-constant approximation, 𝐾1 =
𝐾2 = 𝐾3. Fig. 2D shows that in this approximation the chiral effects
persist and the supercritical model is always valid.

It is important to highlight that Eq. (13) breaks the typical phase
invariance of the real Ginzburg–Landau equation, 𝐴 → 𝐴𝑒𝑖𝜓𝑜 , with
𝜓𝑜 an arbitrary phase between 0 and 2𝜋. This symmetry breaking is
relevant for determining the possible values of 𝜒 . Two specific values
of 𝜓𝑜 are noteworthy: 𝜓𝑜 = ±𝜋, for which the phase transformation
𝐴 → 𝐴𝑒𝑖±𝜋 is the same as changing 𝜒 → −𝜒 . Thus, 𝜒 is not restricted
to be always positive, as shown in Fig. 2, but it can also be negative.

Eq. (13) is formally valid when 𝑉 → 𝑉𝑐 , when | −𝐾32∕4| ≫ 𝜖
(except in the one-constant case), and when 𝜒 ∼ (1) (≫ 𝜖). Therefore,
4 
Table 1
Physical properties of the different nematic liquid crystals (NLC). 𝜖𝑜 is the permittivity
of free space.

NLC 𝐾1 𝐾2 𝐾3 𝜖𝑎
(pN) (pN) (pN) (F m−1)

MLC-6609 [58] 17.2 7.51 17.9 −3.7𝜖𝑜
ZLI-2806 [58] 14.9 7.9 15.4 −4.8𝜖𝑜
MBBA [64,65] 6.95 4.5 8.99 −0.7𝜖𝑜
One-constant 2 2 2 −0.7𝜖𝑜

Fig. 2. Phase diagrams in  − 𝑉 space showing 𝜒 for (A) MLC-6609, (B) ZLI-2806,
(C) MBBA and (D) the one-constant approximation. The red line indicates the critical
voltage Eq. (6). The gray color accounts for the unwound state. The color bar encodes
the values of the chiral parameter Eq. (15). The white area illustrates the region of
parameters where the expression under the square root in Eq. (12) is negative.

in a real experimental situation, the supercritical chiral-anisotropic
Ginzburg–Landau equation will be a valuable model to study chiral
effects around the critical curve 𝑉𝑐 , while imposing confinements suf-
ficiently far from  = 𝐾32∕4, and keeping 𝜒 ≫ 𝜖. In the following,
we explore the chiral effects in the vortex solutions of model Eq. (13)
in the one-constant approximation, 𝛿 = 0. We have checked that the
anisotropic effects, which has been studied before [32], do not play a
relevant role in the numerical studies performed in the next section.
Specifically, we explore how 𝜒 affects the shape of the vortex solutions
of the real Ginzburg–Landau equation (𝜒 = 0 and 𝛿 = 0).

3. Numerical results

To illustrate how the chiral parameter 𝜒 influences the vortex solu-
tions in the supercritical chiral-anisotropic Ginzburg–Landau Eq. (13),
we perform numerical integrations. We discretize the system with finite
differences in space using isotropic stencils in the 𝑥− 𝑦 directions [66],
with a spatial step of 𝛥𝑥 = 0.25 (arb. units) and we use non-flux
boundary conditions for the amplitude 𝐴. These type of boundaries
are chosen to enable the study of isolated topological charges. The
equations are evolved in time through a Forward Euler method with
time step 𝛥𝑡 = 0.01 (arb. units). The numerical procedure to analyze
the dissipative vortices is as follows; first, the solution (𝑢, 𝑣) = (0, 0) is
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Fig. 3. Modulus fields, |𝐴|, for positive (A) and negative (B) vortices for different
values of 𝜒 . The insets illustrate the phase jump of the vortices. The other parameters
are fixed: 𝜇 = 0.5, 𝛿 = 0.0.

perturbed with a small amount of Gaussian noise, which will create
a few ±1 vortices when 𝜇 > 0. Then, we extract the local 𝑢 and 𝑣
fields of positive and negative vortices. Finally, we embed that local
structure at the center of a new numerical domain (300 × 300) and
let it evolve for 40 000 timesteps, which is enough to reach steady
state (𝜕𝑡𝑢 = 𝜕𝑡𝑣 = 0). Fig. 3 shows the modulus field |𝐴| =

√

𝑢2 + 𝑣2
for positive (top panel) and negative (bottom panel) vortices for three
different values of 𝜒 , along with their respective phase field 𝜙 =
t an−1(𝑣, 𝑢) (see insets in Fig. 3). The latter represents the phase of the
complex variable 𝐴 in its polar representation, 𝐴 = |𝐴|𝑒𝑖𝜙, with the
origin located at the center of the vortices. The phase is defined in
the interval [−𝜋 , 𝜋]. Qualitatively, it can be seen that the modulus of
the positive solutions remain isotropic for either 𝜒 > 0 or 𝜒 < 0, and
their phase is unchanged. However, the vortices with negative charge
are drastically affected when chiral terms are present. These vortices
undergo an anisotropic stretching of their core, which depending on
the sign of 𝜒 is either along the 𝑦 direction or along the 𝑥 direction
in our simulations, respectively. This stretching is accompanied by a
modulation in the phase field.

The chiral effect on the vortices with positive charge is simple at
first sight, but when looked in detail there is a nontrivial consequence.
Fig. 4 illustrates an arbitrary cut, which goes through the center of the
vortices for different 𝜒 values. When compared to the non-chiral case
(𝜒 = 0) (black line), positive values of 𝜒 tend to increase the core
size of the vortices (blue line), similar to the effect of the anisotropy
𝛿 in pure Ginzburg–Landau vortices [32]. However, when 𝜒 < 0 (red
line), not only there is a compression of the vortex core, but also the
monotonous shape of the classical positive Ginzburg–Landau vortex is
broken. The value of the new maximum increases with 𝜒 . We have
also observed a maximum in the amplitude field |𝐴| near the vortex
center in localized chiral vortices, which are solutions of the subcritical
version of Eq. (13) without electrical forcing [62]. On the other hand,
the anisotropic reshaping of the negative vortices can be understood
as a simple minimization process. Vortices with negative charge in the
Ginzburg–Landau equation possess a hyperbolic structure in the vecto-
rial representation of the complex field 𝐴, structure that is maintained
when anisotropic effects are considered [32]. This implies that the two-
dimensional plane around the negative vortex will be divided into four
regions, by a separatrix (see red arrows in Fig. 5A). Most importantly,
these four regions can be divided in two sub-regions depending on
the direction of rotation of the vector field. When chiral effects are
different from zero, the system needs to suppress the two sub-regions
with the non-favorable rotation. Fig. 5B–D illustrate different steady
state negative vortices with 𝜒 = −{0.5, 1, 1.5}, respectively, where it can
be seen that the anisotropic stretching of the vortex core is intimately
related with the collapse of the non-favorable rotations. The insets in
5 
Fig. 4. Chiral effects in positive vortices. Spatial profiles of positive vortices along an
arbitrary direction 𝑟 for different values of 𝜒 . The cyan dashed curved represents the
asymptotic value (𝑟 → ∞) of the modulus in the case 𝜒 = −0.5. The other parameters
are fixed: 𝜇 = 0.5, 𝛿 = 0.0.

these three snapshots represent the chiral energy 𝜒 = −𝑖𝜒|𝐴|2(𝜕�̄�𝐴 −
𝜕𝜂�̄�) [51,62], and they clearly show how the favorable rotation regions
invade the whole square domain. Moreover, the chiral energy allows
to visualize that the separatrix curve is deformed near the vortex core.
Notice that negative vortices, with or without chiral effects, similarly
to positive vortices (see Fig. 4), also smoothly connect the zero solution
of 𝐴 to its asymptotic non-zero value.

4. Conclusions

In this work, motivated from a realistic experimental scenario in liq-
uid crystal research, we have derived a supercritical Ginzburg–Landau
type of equation from first principles through a weakly nonlinear
analysis, which considers anisotropy, electrical forcing and chirality.
Particularly, we have shown how an intricate balance between elastic
constants, voltage, cell thickness and helical pitch, controls the chiral
term in the Ginzburg–Landau model. Furthermore, Numerical simula-
tions allowed us to illustrate how the breaking of mirror symmetry
affects the vortex solutions of the Ginzburg–Landau equation. The
positive vortices exhibit an isotropic deformation, capable of stretching
or compressing the core of the vortices. The latter is accompanied with
the emergence of a non-monotonous behavior in the one-dimensional
profile of the modulus field. On the other hand, −1 vortices exhib-
ited an anisotropic stretching of their core due to the chiral effects.
The direction of the stretching is dictated by minimizing the spa-
tial extent of the unfavorable rotations around the negative vortices.
Although our theoretical formalism simplifies the 3D dynamics by
projecting the nematic director onto the 2D plane, we emphasize
that the vortex deformations observed numerically closely reproduce
previous two-dimensional experimental observations in chiral nematic
liquid crystals [53]. Furthermore, our theoretical and numerical results
suggest that the deformations are not constrained to a particular chiral
nematic liquid crystal.

We think that our findings could help in tailoring experiments in
chiral nematic liquid crystals. First, identifying the differences between
Schlieren textures in nematic liquid crystals with and without chiral
dopants is a complicated task under crossed polarized light microscopy.
Our numerical results suggest that these differences should be more
clear if the liquid crystal sample is analyzed under circular polarizers,
which should give a visualization similar to |𝐴|. In a future work,
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Fig. 5. Effects of chirality in vortices with negative charge. The sequence (A-D)
shows the modulus and vectorial representation (red arrows) of 𝐴 for the values
𝜒 = −{0, 0.5, 1, 1.5}. The insets in (B-D) accounts for the chiral energy 𝜒 . The magenta
and blue arrows highlights the division of the hyperbolic vortex in different rotational
domains. 𝜇 = 0.5, 𝛿 = 0.0.

we will conduct this experiment and compare with our current the-
oretical predictions. Secondly, our model could be used to estimate
the cholesteric pitch 𝑝, which is not always easy to measure with
standard procedures. Finally, the dependence of the chiral parameter
on the vortex shapes could motivate experiments to pattern light in
chiral nematic liquid crystal cells by spatially modulating 𝜒 . This could
allow the theoretically informed control of vortex arrays with varying
sizes and shapes. On the other hand, future theoretical extensions
of the present work could explore the weak anchoring limit where
saddle-splay deformations become relevant, as well as investigate how
hydrodynamic and inertial effects influence the annihilation dynamics
of vortices in chiral nematic liquid crystals.
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