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Abstract
Self-organizing triangular lattices of topological vortices have been observed in type-II
superconductors, Bose–Einstein condensates, and chiral magnets under external forcing. Liquid
crystals exhibit vortex self-organization in dissipative media. In this study, we experimentally
investigate the formation of vortex clusters, analogous to Abrikosov lattices, in
temperature-driven chiral liquid crystal droplets. Based on a Ginzburg–Landau-like equation,
we derive the interaction laws underlying the formation of these Abrikosov clusters of chiral
domains. The origin of these is elucidated due to the competition between the repulsive
interaction and the spatial effect of the confinement within the droplet. Our results advance the
theoretical understanding of localized vortex self-organization in liquid crystals and open up
possibilities for controlling the clustering of these topological defects.
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Certain conductive materials become superconductors at very
low temperatures [1, 2]; that is, the electric current through
the material does not present resistance. Furthermore, the
Meissner effect causes the superconductor to levitate in the
presence of a magnetic field, which cannot penetrate the
superconductor. As the magnetic field strength or temperat-
ure increases, the magnetic field in type-II superconductors
begins to penetrate the material at certain points. These pen-
etration points correspond to vortices in the amplitude of the
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superconducting wave function described by the Ginzburg–
Landau equation, as established by Abrikosov [3]. Due to the
repulsion between the vortices and the confinement of the
applied magnetic field, the vortices self-organize into a trian-
gular lattice [3]. This type of vortex arrangement is commonly
referred to as an Abrikosov lattice. This phenomenon has been
observed in superconductors [4, 5] and Bose–Einstein con-
densates [6] under external forcing. Similarly, thermally con-
trolled magnetic materials forced by a magnetic field exhibit
triangular lattices of skyrmions, called the A-phase in chiral
magnets [7, 8]. Triangular lattices of localized vortices or
chiral domains have also been observed in dissipative systems
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such as chiral liquid crystal cells [9–12]. These topological
defects, also known as chiral bubbles or domains, are gener-
ated as the folding of chiral fingers observed in labyrinthine
cholesteric patterns or in the isotropic-chiral nematic phase
transition [12, 13]. Figure 1(a) illustrates the typical trian-
gular lattice observed from the transition between isotropic
to chiral nematic phase in a liquid crystal layer. Since the
medium is chiral, only chiral domains with a positive topolo-
gical charge are stable. This charge accounts for the direction
of the director vector around the vortex position, which rotates
clockwise around it. Vortices of the same charge repel each
other [14]. References [15, 16] present a detailed study of the
three-dimensional structure of these chiral domains employ-
ing confocal microscopy, numerical simulations, group the-
ory, and algebraic geometry, where they are described as ele-
mentary liquid crystal torons. Typically, chiral domains are
created from labyrinthine patterns that generate a spatially ran-
dom distribution of chiral bubbles (cf figure 1(b)). Because of
the weak interaction, no self-interaction of the chiral bubbles
is observed. The interaction between chiral domains has been
qualitatively characterized [17], and free energy terms have
been identified [18]. In addition, based on an appropriate
ansatz for chiral domains of the free energy in three dimen-
sions, an exponential and inverse square root of distance inter-
action law was established and experimentally observed [19].

This letter aims to study the self-organization of localized
vortices in confined geometries, liquid crystal droplets (see
figure 1). Experimentally, we study the formation of clusters
of chiral domains based on temperature-driven chiral nematic
liquid crystal droplets. We have coined these arrangements as
Abrikosov clusters. Employing a chiral-anisotropic Ginzburg–
Landau equation with inhomogeneous parameters, valid near
the winding/unwinding transition, we numerically observe the
formation of Abrikosov clusters of chiral domains. The repuls-
ive interaction between vortices, as well as the effect of the
inhomogeneity induced by the droplet, are analytically char-
acterized. The competition between the repulsive interaction
of chiral bubbles and spatial confinement has been identified
as the origin of these clusters. The results of the numerical
simulations are in good qualitative agreement with the exper-
imental findings.

1. Experimental setup

The temperature-driven chiral liquid crystal droplet setup
is illustrated in figure 1(c). A polarized optical microscope
(POM, Leica DM2700P) was used to examine the droplets
placed on a glass slide inside a thermal control microscope
stage (TC, Mod. LTS350E c/4 Elect LINKAM). The tem-
perature and heat rate in the liquid crystal can be con-
trolled and monitored at this stage with a precision of 0.01±
0.005 ◦Cmin−1. Light from a white LED source (WLS) is
transmitted through a polarizer P to illuminate the liquid
crystal droplets. The objective O captures the transmitted
light, reaching an analyzer A cross-polarized to the polar-
izerP. A complementarymetal-oxide-semiconductor (CMOS,
Thorlabs CS126CU) camera captures the transmitted light.

Figure 1. Experimental observation of Abrikosov clusters in chiral
liquid crystal droplets. Triangular lattice (a) and spatial random
distribution (b) of vortices observed in a chiral liquid crystal cell
with homeotropic anchoring. (c) Schematic representation of the
experimental setup. A chiral nematic liquid crystal (CNLC) droplet
is placed over a glass slide inside a thermal chamber (TC) and
illuminated by a white LED light source (WLS). The analyzer,
objective, and polarizer are represented by A, O, and P, respectively.
The two polarizers A and P are orthogonal, cross-polarization. The
CNLC is monitored by a complementary
metal–oxide–semiconductor (CMOS) camera. (d) Schematic
representation of the average molecular alignment for different
concentrations of the chiral molecule EOS-12 at 10 and 3 wt%. A
homeotropic state and orthogonal anchoring to the surface
characterize small and large droplet. (e) Abrikosov cluster on a
droplet for different concentrations of chiral molecules at 10 (left
panel) and 3 (right panel) wt%. (f) Formation of clusters with
different numbers of clustered vortices at a concentration of 3 wt%.
The white double arrows represent the crossed polarization. Scale
bars are 150 µm in all images.

The droplets were generated by capillary deposition using a
0.2–2 µl micropipette over a soda-lime glass slide (EDLAB
Cat. No. 7105). Note that we have no control over the exact
shape of the droplet and its contact angle (see figure 1).
The untreated glass slide displayed a homeotropic alignment
for the liquid crystal droplet (see figure 1(d) for a schem-
atic representation of the average molecular alignment within
the droplet). The chiral nematic liquid crystal utilized in this
experiment comprises E7 (Merck) as the nematic host and
EOS-12 as the chiral molecule (for details on this molecule
see [20]). Mesophase characterization as a function of temper-
ature and concentration of the liquid crystal mixture is avail-
able in [21].

2. Experimental Abrikosov cluster

Initially, the droplet is heated to a temperature of 80 ◦C, which
is above the chiral nematic-isotropic phase transition. After
reaching the set temperature, the system is cooled down to
18 ◦C (room temperature) in approximately 10 min.
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The droplet transitions from an isotropic liquid phase to
a chiral liquid crystal one, and as the liquid crystal winds in
the chiral phase, localized vortices are nucleated inside the
droplet [22], and they self-organize into a clustered triangu-
lar lattice, Abrikosov cluster. To study the dynamics of chiral
domains in thermal equilibrium, the system is monitored after
one hour at room temperature. Figures 1(e) and (f) show typ-
ical Abrikosov clusters observed in the liquid crystal droplets
with different concentrations of chiral molecules. This trian-
gular cluster is a consequence of two facts: (i) the systemmax-
imizes the chiral energy by creating chiral domains (bubbles)
that repel each other, and (ii) the inhomogeneity of the droplet
induces the chiral domains tomigrate toward the center of it (cf
figure 1(e)). The formation of Abrikosov clusters is observed
for droplets of different sizes. Note that as the concentration of
the chiral molecules decreases, the size of the chiral domains
increases [23]. To facilitate the observation of the formation
of the Abrikosov cluster in large droplets, we considered a
lower concentration of the chiral molecules (cf figure 1(e)). In
the case of small droplets (with a diameter of about 200 µm),
we observe that the background of the chiral domains is in
a homeotropic state, i.e. the background is dark. On the con-
trary, a structure of four brushes is observed as a background
for large droplets (diameter larger than 200 µm). This indic-
ates that the molecules are anchored perpendicular to the sur-
face of the droplet [24]. Figure 1(d) illustrates the anchoring
of small and large droplets. Likewise, we observe different
triangular clusters for droplets with the same concentration
of chiral molecules but different sizes, as illustrated in
figure 1(f).

3. Theoretical description

Chiral nematic liquid crystals are characterized by the fact that
the molecules locally have an orientation order but not a posi-
tional one [12, 24]. This average molecular orientation is char-
acterized by a director vector n(⃗r, t), where r⃗ and t represent the
spatial coordinate and time. Likewise, on a macroscopic level,
chirality manifests itself by generating a rotation of the dir-
ector vector, which accounts for a collective rotation of many
molecules. The rotation step is called pitch [12, 24] and is rep-
resented by the parameter p. For a chiral liquid crystal thin film
with homeotropic anchoring, the director is described by

n=
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where α(x,y, t) and θ(x,y, t) account for the polar and azi-
muthal angles the director forms concerning the vertical direc-
tion. z represents the vertical coordinate of the thin film thick-
ness. d denotes the thickness of the thin liquid crystal film.
The minimization of the Frank–Oseen free energy character-
izes the dynamics of the director [12, 24].

Due to elastic coupling, homeotropic anchoring, and con-
finement effects on the chiral liquid crystals, the system min-
imizes the free energy through a completely vertical config-
uration in a homeotropic state as the temperature decreases.
Namely, the homeotropic state is described by α= 0 and
n= (0,0,1). This state is often referred to as the unwound
state. Experimentally, it is characterized by the droplet becom-
ing completely dark under crossed polarizers. As the tem-
perature increases, the homeotropic state becomes unstable,
characterized by the manifestation of a chiral state, chiral
domains, and cholesteric fingers [12, 24]. This transition
is known as a winding/unwinding transition and is of the
first order type, i.e. it is characterized by exhibiting hyster-
esis [22]. Taking into account that the director is slightly
deformed from the z-axis (α≪ 1), the order parameter that
characterizes this transition is Q(x,y,z, t)≡ nz(nx+ iny)≈
Aeiz/p sin(π z/d) [25], where the two-dimensional complex
amplitude A(x,y, t)≡ α(x,y, t)eiθ(x,y,t) accounts for the projec-
tion of the director into the xy-plane. Considering the equation
of the director close to thewinding/unwinding transition, using
expression (1) for small α, and through weakly nonlinear ana-
lysis, amplitude A satisfies the equation (dimensionless chiral-
anisotropic Ginzburg–Landau amplitude equation) [13, 22]
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K1, K2, and K3 account for the splay, twist, and bend elastic
constants, C ≡ d/p stands for the confinement parameter, and
Q≡ K3/K2 − 0.53K1/K2 − 2.1K3/K2 + 0.22K1/K3 + 1.18.
∂η ≡ ∂x+ i∂y is the differential operator on the complex plane,
the Wirtinger derivative. Ā accounts for the complex conjug-
ate A. The pitch p is a decreasing function of the concentration
of the chiral dopants and the temperature [21]. The explicit
expression for pitch as a function of chiral molecule concentra-
tion and temperature is unknown; however, an experimental fit
shows that the pitch decays inversely with concentration [21].
Thus, the chirality parameter χ grows linearly with the con-
centration of chiral molecules. Note that µ is the control para-
meter, which is proportional to the temperature minus the
critical temperature of the transition, and β, δ, and χ account
for the nonlinear response, anisotropic, and chiral coupling,
respectively. In [13], a detailed derivation of the amplitude
equation (2) is reported.
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Figure 2. Chiral domains and interaction between them of the
dimensionless chiral-anisotropic Ginzburg–Landau amplitude
equation (2) with µ=−0.2, β= 1, δ= 0.25, and χ= 0.7. (a)
Magnitude |A| and (b) phase θ of the amplitude A= |A|eiθ of a
chiral domain. The phase jump indicates the presence of a
topological defect. (c), (d) Schematic representation of the repulsive
interaction between vortices, where ∆ accounts for the distance
between vortices,∆1(t1)<∆2(t2), with t1 < t2. (e), (f) Numerical
profile and experimental transverse light intensity profile of chiral
domains. The red area around the experimental profile represents
the measured standard deviation of eight different vortices along
their brightest section.

4. Numerical Abrikosov cluster

The amplitude equation (2) is variational and has been used
to understand chiral domains, cholesteric fingers, disordered
patterns, and topological transitions in chiral liquid crystals
[12, 13, 22, 26]. For this purpose, we proceed by integrat-
ing the amplitude equation (2) on a square grid with peri-
odic boundary conditions, using a spectral method and a
fourth-order Runge–Kutta scheme (see supplemental mater-
ial for more details). Figures 2(a) and (b) show the amp-
litude magnitude |A| and phase θ of a chiral domain. Note
that only stable chiral domains with positive topological
charges are observed. Likewise, when two chiral domains
are considered, they repel each other with a weak force,
as illustrated in figures 2(c) and (d). Figures 2(e) and (f)
show the profile of the numerical and experimental chiral
domains.

The parameters of the amplitude equation depend on the
thickness of the liquid crystal sample (cf set of formulas 3).
Hence, the parameters are expected to become inhomogen-
eous to model the droplet effect. The small control para-
meter µ is most affected because the other parameters are
of order one (cf supplemental material). Therefore, we pro-
mote this parameter as a function of the spatial coordin-
ates. Due to the symmetry of the droplets, we consider

Figure 3. Numerical Abrikosov cluster of the dimensionless
chiral-anisotropic Ginzburg–Landau amplitude equation (2) with an
inhomogeneous bifurcation parameter µ(r) = µ0 +µ1r2, β= 1,
δ= 0.25, and χ= 2.4. (a), (b) spatiotemporal counterplot of single
and multiple chiral domains interacting with µ0 =−0.55 and
µ1 =−2× 10−5, respectively. The colormaps consider the initial
and final states ti and tf. (c) Time series of snapshots considering the
clustering of multiple vortices into an Abrikosov cluster, where
t1 < t2 < t3.

for simplicity a parabolic shape µ(r) = µ0 +µ1r2, where r
represents the polar radial coordinates with the origin at
the position of the maximum height of the droplet (center
of the droplet). Assuming that the droplet thickness is
deformed as d= d0 + d1r2, then µ0 ≡ π2(2d0/p−K3/K2)/d20
and µ1 = 2π2d1/d20p− 2π2d1(2d0/p−K3/K2)/d30p. Figure 3
shows numerical simulations of the amplitude equation (2)
with inhomogeneous bifurcation parameters µ(r), showing
chiral domains propagating towards the origin of the coordin-
ate system µ(r= 0). Note that if one considers other even
polynomials for µ(r), one observes the same formation of
vortex clusters qualitatively. Figures 3(a) and (b) show the
spatiotemporal evolution of the amplitude A for single and
multiple chiral domains. Furthermore, figure 3(c) shows a
colormap time sequence of the spatiotemporal diagram illus-
trated in figure 3(b). From these charts, we conclude that the
localized vortices self-organize into a triangular cluster as an
effect of the repulsive interaction between them and the con-
finement effect induced by the inhomogeneous bifurcation
parameter.

To figure out the origin of the self-organization that gives
rise to the Abrikosov cluster, we must characterize both the
repulsive interaction between chiral bubbles and the influ-
ence of the inhomogeneity given by the spatial constraint of
the droplet to induce the clustering of the chiral domains.
Therefore, to determine the interaction, we consider two chiral
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domain solutions whose positions are initially at a distance∆0

from each other. Let us consider the following ansatz for the
chiral domain pair

A(r, t)≡ R1 (r+∆(t) r̂/2)eiφ1(r,∆(t))

+R2 (r−∆(t) r̂/2)eiφ2(r,∆(t)) +W(r,∆(t)) , (4)

where the coordinate system is positioned at the midpoint
between both chiral domains. {R1,φ1} and {R2,φ2} are the
magnitude and phase of the respective chiral domains posi-
tioned in −∆/2 r̂ and∆/2 r̂, respectively.∆(t) is the distance
between chiral domains. W(r,∆(t)) accounts for a small cor-
rection that becomes smaller as ∆ increases. Replacing the
ansatz (4) in equation (2), considering that the chiral domains
are sufficiently separated, linearizing in W, and imposing a
solvability condition, after straightforward calculations, one
obtains at dominant order

∆̇≈−2β
3

´∞
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1
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dz´∞
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≈ I e
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√
∆
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where ϵ=
√

|µ|/(1+ δ) characterizes the spatial decay of
chiral domains and I is a positive constant. Consequently,
the chiral domains exhibit an exponential kinematic repulsion
law, resulting in a logarithmic growth of the distance over
time. This phenomenon is characterized by the slow move-
ment of the chiral domains away from each other. The inter-
action between chiral domains has been calculated, motivated
by the skyrmion bags observed in liquid crystals and ferro-
magnets [19]. Based on the ansatz for chiral domains in liquid
crystals and free energy in three dimensions, the same inter-
action law, formula (5), has been found and observed exper-
imentally. In the case of ferromagnets, the formula (5) does
not adequately describe the results, which can be improved by
including magnetic dipolar moment interaction effects. Note
that a similar interaction law is obtained for localized preces-
sion states on a flat ferromagnetic layer subjected to amagnetic
field [27].

As we have mentioned, to model the spatial confine-
ment caused by the droplet, one can consider a single chiral
domain subjected to a weakly spatial inhomogeneity µ(r) =
µ0 +µ1r2 with µ1 ≪ 1. Introducing the ansatz A= Av(⃗r−
x⃗0(t))+W (⃗x0(t), r⃗), where Av = R(r)eiθ is the vortex solu-
tion of the homogeneous equation (2), x⃗0 = (x0,y0) is the vec-
tor that account for the vortex position with respect to the
droplet center, assuming that x⃗0(t) slow varying temporal vec-
tor (∂t⃗x0 ≪ 1), and W small correction function. Introducing
the previous ansatz in equation (2), linearizing inW and after
straightforward calculations, we get

∂t⃗x0 =−J 2⃗x0, (6)

where J 2 =−
´∞
0 r2∂rR2 dr/

´∞
0 2r[(∂rR)2 +R2/r]dr. Then,

the vortex tends to move toward the center of the droplet.

Figure 4. Transition states and irregular droplets in chiral nematic
liquid crystal droplets. (a), (b) Experimental and numerical
transition states from chiral to isotropic state formed inside the
droplets, respectively. Both states represent the evolution of chiral
domains from chiral textures. (c) Abrikosov cluster formed in an
irregular elongated droplet for 10 wt% of the chiral mixture. (d)
Chiral domains self-organization over an irregular potential
µ(r) = ax2 + by2 + c, where a=−2× 10−5, b=−2× 10−7, and
c=−0.55. The other parameters used for the numerical simulations
were β= 1, δ= 0.25, and χ= 2.4. The white double arrows
represent the crossed polarization.

Namely, the set of equations (6) indicates that the vortexmoves
against the slope imposed by the inhomogeneity. Therefore, it
is expected that by incorporating an inhomogeneous potential
in equation (2), a chiral bubble should move to the maximum
value of µ as long as it is in the range of existence of chiral
domains [22]. Note that in the previous analysis we considered
a slight variation in the thickness of the droplet to perform our
analytical study. In the case of confinement with more realistic
shapes, the analytical calculations are valid only near the cent-
ral region; towards the droplet boundary, the chiral domains
are strongly deformed, which does not allow perturbative cal-
culations, and only numerical simulations allow us to perform
the analysis.

In the case of multiple solutions, since the interaction
described by equation (5) is repulsive and the inhomogen-
eous parameter induces the clustering (see set of equation (6)),
the chiral domains self-organize into an Abrikosov cluster.
Hence, this inhomogeneity allows us to study the effect of
the confinement imposed by the droplet, it is also possible
to study other types of observed textures, such as trans-
ition states that appear in the vicinity of the chiral nematic-
isotropic phase transition and different droplet shapes,
which allow to control the self-organization of the vortices.
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Figure 4 shows the correspondence between numerical res-
ults and experimental observations for both the transition
state and the case of a droplet with a non-axisymmetric
shape. In the latter case, we consider a bifurcation para-
meter µ(x,y) with an elongated shape in one direction (cf
figure 4).

In conclusion, based on an amplitude equation close
to the unwinding/winding transition and temperature-driven
chiral liquid crystal droplets, we have demonstrated theoret-
ically and experimentally the self-organization mechanisms
of chiral domains that give rise to Abrikosov clusters in
dissipative media. The observed phenomenon is the dissip-
ative counterpart of the triangular lattice or Abrikosov lat-
tice, observed in conservative systems such as driven super-
conductors, Bose–Einstein condensates, and chiral magnetic
systems.

Numerically, we could reproduce the experimental obser-
vations of temperature-driven CNLC droplets in fair qualit-
ative agreement. A similar triangular vortex lattice is gener-
ated for curved smectic liquid crystals (see review [28] and
references therein), as well as other forms of droplet-like con-
finement such as a Janus shell [29]. An amplitude equation
approach, such as equation (2), may allow an understanding
of the emergence of this type of self-organization. Note that as
light passes through a droplet configuration, it acquires chir-
ality via the chiral domains [30]. Optical vortex clusters are
essential for developing data transmission [31] and improv-
ing astronomical imaging [32], because they contain mul-
tiple optical vortices that provide information, flexibility, and
manipulation. Our results open the way for future studies on
the control and applications of topological defects in chiral
materials and provide a theoretical framework for studying
systems with similar defects, such as chiral magnets and chiral
ferromagnetic liquid crystal colloids [33]. Although the equi-
libria one expects to observe should be similar, the dynam-
ics of chiral domains in conservative and dissipative systems
differ significantly.

As mentioned, chiral domains are nucleated by heating the
system above the chiral nematic-isotropic transition temper-
ature and then cooling it to room temperature. In this ini-
tial process, the chiral domains begin to rearrange and inter-
act out of thermal equilibrium. Thermal gradients can induce
molecular reorientation, thermophoresis [34–37]. This phys-
ical process may be critical to understanding these initial tran-
sients and the creation of clusters of chiral domains. Work in
this direction is ongoing. Moreover, it has been shown that
chiral domains driven by oscillating fields exhibit propaga-
tion [38, 39]. Our approach based on amplitude equations can
help to understand the dynamics of these propagative chiral
domains.
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