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Macroscopic systems present particle-type solutions. Spontaneous symmetry-breaking can cause these
solutions to travel in different directions, and the inclusion of random fluctuations can induce them to run
and tumble. We investigate the running and tumbling of localized structures observed on a prototype model
of one-dimensional pattern formation with noise. Statistically, the dynamics of localized structures are
examined, particularly the mean square displacement as a function of time. It initially shows a diffusive
behavior, replaced by a ballistic one, and finally manifests itself as diffusive again. We derive a minimal
model for the position and velocity of localized structures, which reveals the origin of the observed
dynamics.
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One of the most appealing phenomenon of macroscopic
systems is the particlelike solutions [1–8]. The observed
dynamical behaviors are characterized as being localized.
Likewise, these behaviors are described by continuous
parameters such as position and discrete parameters that
take into account mobility, charge, and width, among other
factors. The most paradigmatic and pioneering example is
soliton or solitary waves observed when disturbing a water
channel [5–7]. This type of solution has played a relevant
role in modern telecommunications based on optical fibers
[8]. During the last decades, a great effort has been put into
the extension of this soliton concept from conservative to
dissipative systems, in which these particlelike solutions
are called dissipative localized structures (LS) [1–4].
Dissipative particlelike solutions have been observed in
different fields, such as domains in magnetic materials,
chiral bubbles in liquid crystals, current filaments in gas
discharge, spots in chemical reactions and optical systems,
localized states in driven fluid surface waves, oscillons in
granular media, isolated states in thermal convection, and
solitary waves in nonlinear optics, among others (see
reviews [1–4] and references therein). For one-dimensional
systems, the LS correspond to homoclinic curves in the
corresponding associated spatial system [9]. The ingre-
dients for observing these particlelike solutions are the
coexistence of states and a characteristic length, which is
achieved, for example, in systems that exhibit the coexist-
ence of patterns and homogeneous states. A prototype
model with these ingredients is the nonvariational Swift-
Hohenberg equation, which has been proposed to describe
the dynamics close to the confluence of nascent bistability
and spatial instability, Lifshitz point, in various physical
contexts such as nonlinear optics [10,11], chemical [11],

elastic [12], acoustic [13], and biological systems [11]. This
model equation exhibits a family of LS. As a result of the
nonvariational terms, this solution can exhibit a sponta-
neous reflection symmetry-breaking and present a transi-
tion between motionless and traveling solutions (cf. Fig. 1)
[14], which corresponds to a nonequilibrium Ising-Bloch
transition [15–19]. Hence, depending on the initial con-
dition, the LS can propagate towards one or the other flank.
A similar phenomenon is observed in semiconductor lasers
with absorbent saturable [20]. This phenomenon is the
analog of domain propagation in magnetic systems [15], in
which was introduced the nonequilibrium Ising-Bloch
transitions, that is, the domain walls exhibit a spontaneous
symmetry breaking and begin to propagate. This phenome-
non has also been proposed and observed in liquid crystals
[16], chemical reactions [17], optical [18] and mechanical
systems [19]. Adding permanent fluctuations, noise can
induce desymmetrization of the LS, causing them to
propagate in one direction and abruptly tumble and
propagate in the other direction (see Fig. 1). Running
and tumbling is a phenomenon widely observed in the
dynamics of bacteria [21,22], which exhibit a non-
Brownian motion characterized by alternating ballistic
and diffusive regime [23].
This Letter aims to study the running and tumbling of

one-dimensional localized structures induced by random
fluctuations. Based on a prototype model of localized
structures with noise in the parameter that controls the
transition between traveling and motionless localized
structures, the run and tumble of LS is observed. The
probability distribution of the LS position is characterized.
The mean square displacement (MSD) is characterized as a
function of time, we initially find a diffusive behavior,
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which a ballistic one later replaces, and finally, a diffusive
type is observed again. The observed behavior differs from
the characteristic of bacterial movements due to the
presence of an initial diffusive behavior. When the noise
intensity level is changed, the typical behavior of the MSD
remains the same. The coefficients that characterize these
dynamics as a function of the noise intensity are revealed.
By deriving a reduced model equation for the dynamics of
the localized structure’s position and velocity, we can
obtain a bistable system for its velocity with noise. This
minimal model allows us to analytically derive the evolu-
tion of the mean quadratic displacement. The minimal

model is similar to those proposed to describe the dynamics
of bacteria. However, it is a noise in the definition of speed,
which is responsible for the diffusive regime for short
times not reported in the context of bacterial dynamics.
Numerical simulations of the model for semiconductor
lasers with saturable absorbent qualitatively show the same
behavior but only present the last regime for the MSD.
Prototype model of LS—As mentioned, essential ele-

ments for observing LS are the coexistence of equilibria
and a characteristic length. These ingredients are naturally
found around a Lifshitz point [24], characterized by the
confluence of the nascent of bistability and spatial insta-
bility. Employing scale separation methods and normal
form theory, this instability is described by (nonvariational
Swift-Hohenberg equation) [10–13],

∂tu ¼ ηþ μu − u3 − ν∂2xu − ∂
4
xuþ 2bu∂2xu

þ ½cþ ffiffiffi
a

p
ξðx; tÞ�ð∂xuÞ2; ð1Þ

where uðx; tÞ is a scalar order parameter that can account
for light intensity, chemical concentrations, average
molecular orientations, radial displacement, among others.
μ is the bifurcation parameter. η parameter controls the
bistable region. ν is the diffusion (< 0) or antidiffusion
(> 0) coefficient. b and c stand for the nonlinear diffusion
and advection, respectively. ξðx; tÞ is a Gaussian white
noise with zero mean value hξðx; tÞi ¼ 0, h·i is the average
overall noise realizations, correlation hξðx; tÞξðx0; t0Þi ¼
δðt − t0Þδðx − x0Þ, i.e., the noise has not temporal and
spatial memory, and a represents the noise level intensity.
Running and tumbling LS—Numerical simulations of

model Eq. (1) show LS, which present a transition between
motionless and traveling LS, nonequilibrium Ising-Bloch
transitions, when increasing the nonvariational parameter c
associated with nonlinear advection [14]. Figure 1 shows
the typical localized structures of model Eq. (1) and its
respective bifurcation diagram for its velocity as a function
of parameter c. By including the effects of fluctuations of
the nonlinear advection parameter c in the region of
localized propagative structures, we numerically observe
the running and tumbling of localized structures. In all
numerical simulations, we consider as an initial condition a
localized state that corresponds to a motionless LS obtained
with c < c�. Figure 1(e) illustrates the typical spatiotem-
poral dynamics observed for localized structures. In order
to figure out the statistical dynamics of LSs, we consider
many realizations that start with the same initial condition,
x ¼ xi, depicted in Fig. 1(f). From these trajectories, we can
calculate the probability distribution density of the position
Pðx0; t; xi; t ¼ 0Þ of the localized structures for each instant
of time, where x0 accounts for the position of LS at time t.
Figure 1(g) summarizes the results found for the evolution
of the position probability distribution density. From this
chart, we conclude that the localized structures present a

(a)

(b)

(e) (f)

(g)

(b1)

(c)

(c1)

(d)

(d1)

FIG. 1. Running and tumbling of LS of Eq. (1) with η ¼ −0.02,
μ ¼ −0.092, ν ¼ 1.0, b ¼ −1.0, a ¼ 0, Δx ¼ 0.8, and
Δt ¼ 0.03. (a) Bifurcation diagram of the LS velocity as a
function of parameter c. The transition between motionless and
traveling solutions occurs at c≡ c� ¼ 0.856 where the velocity
has the form v ¼ �v0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c − c�

p
, v0 ¼ 0.222. The solid and dashed

lines account for stable and unstable LS. The arrows show
schematically noise-induced transitions between LS. (b),(c), and
(d) The spatiotemporal evolution and profile of the static,
traveling towards the left and right flank LS, respectively.
(e) Spatiotemporal evolution of LS under the effect of random
fluctuations with noise level intensity a ¼ 0.5. (f) Temporal
evolution of various LS trajectories from the same initial
condition xi. (g) Probability density distribution Pðx0; t; xi; t ¼
0Þ of LS position as a function of time.
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dispersive process. To characterize this dispersive process,
we have calculated the mean square displacement
MSD ¼ hðx0 − hx0iÞ2i. Figure 2(a) summarizes the tem-
poral evolution of the MSD. From this chart, we initially
observe a transient that immediately follows a power law t
(t ≤ t1 in Fig. 2), which means that the LS presents a
diffusive behavior later this behavior is replaced by a power
law t2 (t1 ≤ t ≤ t2 in Fig. 2), which accounts for a ballistic
behavior and finally the system again presents a power law
t (t > t3 in Fig. 2), diffusive behavior, for long times. The
observed dynamics can be understood qualitatively as a
bistable potential UðvÞ for velocity with noise when the
system is initiated from the unstable point, [see Fig. 2(b)].
In fact, when the LS moves in one direction for a short time,
it exhibits small oscillations to speed. These dynamics are
represented as fluctuations around the minimum power [see
Figs. 2(b) and 2(c)]. For a long enough time, fluctuations
can induce a transition between the minima (t ∼ t2),
causing the LS to tumble and propagate in the other
direction. Note that t2 is characterized by the mean first
passage time [25]. For times larger than the mean first
passage time, the LS fluctuates without sensing the
presence of the bistable potential structure.
To study the universality of the curve found for MSD,

we have carried out a large number of numerical simu-
lations for different values of the noise intensity level a.
Figure 3(a) depicts the type of trajectories found for various
noise levels. Likewise, we have determined the MSD for
different noise levels, see Fig. 3(b). We note that qualita-
tively the observed curves are similar and all present the
same regimes. The shift of the small MSD curve is due to
the fact that the small MSD value is reached more quickly
at higher noise levels. To characterize the different regions
we can approximate the MSD by region

MSDðtÞ ¼

8>><
>>:

ffiffiffiffi
D

p
tα; t ≤ t1;ffiffiffiffi

B
p

tβ; t1 ≤ t ≤ t2;ffiffiffiffi
F

p
tγ; t ≥ t2:

ð2Þ

Figure 3(c) shows the different exponents fα; β; γg as a
function of noise intensity level a. This graph shows that
the tendency of the exponents is to decrease as a function of
the noise level. Notice that the running and tumbling
observed in bacteria only exhibit the last two regimes
[23], that is, ballistic and diffusive regimes.
In brief, the dynamics of traveling localized structures

exhibit a non-Brownian motion characterized by alternating
from a diffusive ballistic to a diffusive regime. When
considering Eq. (1) with homogeneous noise, ξ ¼ ξðx; tÞ,
the running-and-tumble phenomenon does not take place
since the noise cannot spatially dissymmetry the LS and
then change its propagation direction and flip it. Hence, we
expect the phenomenon to be observed for uncorrelated or
finitely correlated spatiotemporal noises.
Particle-type description of LS—To describe the dynam-

ics of the LS, i.e., the position and velocity, we consider the
strategy used in Ref. [14], in which the system is studied
close to the transition of travel to motionless LSs, where
c ¼ c� þ ϵc0 with ϵ ≪ 1 (cf. Fig. 1). Let us consider the
ansatz uðx; tÞ ¼ usl½x − x0ðϵtÞ� þ ϵv0ðϵ2tÞuas½x − x0ðϵtÞ�þ
wðx; x0; v0Þ, where usl and uas are the symmetrical and
asymmetrical part of the LS. x0 and v0 are the positions and
the amplitudes of the asymmetrical part of the LS. Note that
temporal scales of x0 and v0 are different [14]. Introducing
the above ansatz in model Eq. (1), linearized in w and
imposing the solvability condition, after straightforward
calculations, we get the dominant order (the particle-type
equation, the reduced model)

(a) (b)

(c)

FIG. 2. Statistical analysis of random displacement of
the localized structures of model Eq. (1) with η ¼ −0.02,
μ ¼ −0.092, ν ¼ 1, b ¼ −1.0, c ¼ 0.865, a ¼ 0.5, Δx ¼ 0.8,
Δt ¼ 0.03. (a) Mean square displacement of the LS as a function
of time. The straight lines and their respective exponents account
for the different regimes. t1, t2, and t3 are characteristic times that
account for the diffusive, ballistic, and diffusive regimes, re-
spectively. (b) Bistable potential UðvÞ for the LS velocity, which
qualitatively describes the running and tumbling dynamics.
(c) Spatiotemporal dynamics of run and tumble of LS and their
time characteristics.

(a)

(b) (c)

FIG. 3. Characterization of the dispersion of localized struc-
tures of model Eq. (1) by η ¼ −0.02, μ ¼ −0.092, ν ¼ 1,
b ¼ −1.0, c ¼ 0.865, Δx ¼ 0.8, Δt ¼ 0.03. (a) Spatiotemporal
trajectories of the LSs for different noise level intensity. The
different colors show the different trajectories. (b) MSD for
different noise levels a ¼ 0.2, a ¼ 0.5, and a ¼ 1.0. (c) Expo-
nents of the MSDðtÞ as a function of noise intensity level a.
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dv0
dt

¼ σv0 − v30 þ η1ðtÞ ¼ −
∂Uðv0Þ
∂v0

þ η1ðtÞ;
dx0
dt

¼ v0 þ η2ðtÞ; ð3Þ

with the bifurcation parameter σ ≡ 2ϵc0⟪ψ1j∂xuas∂xuls⟫=
⟪ψ1juas⟫ that is proportional to c − c�. The stochastic
terms η1ðtÞ¼a⟪ψ1jξðx;tÞð∂xulsÞ2⟫=⟪ψ1juas⟫ and η2ðtÞ ¼
−a⟪ψ0jξðx; tÞð∂xulsÞ2⟫=⟪ψ0j∂xuls⟫ account for the
Gaussian white noise without memory, i.e., hη1ðtÞi ¼
hη2ðtÞi ¼ 0, hη1ðtÞη1ðt0Þi¼a1δðt− t0Þ, and hη2ðtÞη2ðt0Þi ¼
a2δðt − t0Þ. ψ0 and ψ1 are critical modes of linear adjoint
operator [14], and the symbol ⟪fjg⟫≡ R

fgdx stands for
the inner product. Hence, the dynamics of localized
structures are characterized by having a Langevin equation
for velocity v0 with a symmetric bistable potentialUðv0Þ ¼
−σv20=2þ v40=4 with minima at � ffiffiffi

σ
p

. The bistable poten-
tial for the velocity v0 is illustrated in Fig. 2(b). Note that a
Langevin equation relates the position and velocity of the
LS; that is, speed and position are not simply related by
definition. Namely, a Langevin equation with inertia does
not describe the set of Eqs. (3). From model Eq. (3) and the
noise-induced transition phenomenon, one expects that the
trajectories present a running and tumbling behavior.
The reduced dynamical model (3) from the resting

configuration v0ðt ¼ 0Þ ¼ 0 is initially characterized
because the LS is initially characterized because the LS
acquires a speed towards a flank (minimum of the potential)
and begins to fluctuate around that speed (t ≤ t2 in Fig. 2).
Subsequently, for times on the order of the mean first
passage time, the LS can stop and change the direction of
propagation (t ≥ t2 in Fig. 2) and again perform this
dynamic cycle (running and tumbling), as illustrated in
Fig. 2(c). Therefore, the reduced model Eq. (3) adequately
captured the dynamics of the localized structures of
the nonvariational Swift-Hohenberg Eq. (1). Neglecting
the cubic term of the reduced model (3), one can describe
the dynamics around the unstable and stable equilibrium
point, where only the linear constant σ is changed to −2σ.
we can perform a similar calculation to obtain the MSD that
carried out by Chandrasekhar [26]; after straightforward
calculations, we get

MSD ¼
�ðA0 þ

ffiffiffi
σ

p Þ
2σ

ðe−2σt − 1Þ
�

2

þ a1
8σ3

½4σða1 − 2σa2=
ffiffiffiffiffi
a1

p Þ2t − 3a21 þ 8a1a2σ

þ 4a1ða1 − 2σa2Þe−2σt − a21e
−4σt�; ð4Þ

where A0 ≡ v0ðt ¼ 0Þ is the initial speed. Formula (4) is
linear in time for short times; then, it is corrected with
quadratic terms when the time increases, and finally, for a
very long time, it is linear again. Hence, it is in agreement
with the MSD expression (2) and numerical simulations of

models (1) and (3). Figure 4(a) shows the MSD obtained
from simulating the reduced Eq. (3) and their typical
temporal trajectories for different noise intensity levels
agree with formula (4).
Transitions from motionless to moving LS have also

been observed in optical [27,28] and gas discharge experi-
ments [2]. To shed light the universality of this phenome-
non, let us consider the cubic-quintic Ginzburg-Landau
equation with diffraction, in which a transition from
propagative to motionless pulses has recently been reported
[20], the amplitude equation reads

∂ψ

∂t
¼ ½μþ ffiffiffi

a
p

ξðx; tÞ þ βjψ j2 þ γjψ j4�ψ þ i
∂
2ψ

∂x2
; ð5Þ

where ψðx; tÞ is a complex order parameter, μ is the
bifurcation parameter, the complex coefficient β ¼ βr þ
iβi and γ ¼ γr þ iγi account for nonlinear dissipation and
saturation (real parts) and phase response (imaginary parts).
ξðx; tÞ ¼ ξrðx; tÞ þ iξiðx; tÞ is a complex Gaussian white
noise with mean value hξðx; tÞi ¼ 0 and correlation
hξðx; tÞξ̄ðx0; t0Þi ¼ 2δðt − t0Þδðx − x0Þ. Note that the pre-
vious model Eq. (5) was derived for a semiconductor laser
with absorber saturable medium [20], where ψ accounts for
electric field envelope and μ is proportional to the critical
pumping.
Numerical simulations of the stochastic amplitude

Eq. (5) show the running and tumbling of localized
structures. Figure 4(b) illustrates a typical trajectory of a
localized structure with running and tumbling, obtained
through numerical simulations of the stochastic amplitude

(a)

(b)
(b1)

(a1) (a2)

FIG. 4. Running and tumbling of LSs. (a) MSD obtained from
numerical simulation of the reduced model Eq. (3) by σ ¼ 0.1,
a1 ¼ 0.12, and a2 ¼ 0.24. Panels (a1) and (a2) show temporal
trajectories for different intensity levels of noise of a1, a1 ¼ 0.12,
and a1 ¼ 0.031, respectively. (b) Spatiotemporal trajectory of the
amplitude jψ j of the LS obtained by numerical simulation of the
stochastic amplitude Eq. (5) by μ ¼ −0.05, βr ¼ 1.22, βi ¼ 0.7,
γr ¼ −1.0, γi ¼ 0.5, a ¼ 0.003, Δx ¼ 0.5, and Δt ¼ 0.05. Panel
(b1) MSD obtained from numerical simulation of the stochastic
amplitude Eq. (5) with the same parameter. The segmented (t2.5)
and solid line (t) show the trend observed in the different running
and tumbling regimes of the LSs.
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Eq. (5). To characterize the statistical dynamics of these
localized structures with running and tumbling, we have
calculated the MSD of trajectories. Figure 4(b1) summa-
rizes the results found, where we identified three regimes:
transient phase and amplitude adaptation, superballistic
with MSD ∼ t2.5, and diffusive behavior with MSD ∼ t.
Characterization of the role of phase amplitude in the
observed dynamics is in progress.
In conclusion, particlelike solutions of one-dimensional

field equations that present a transition between traveling
and motionless solutions under the influence of inherent
fluctuations present running and tumbling. This non-
Brownian dynamic is statistically characterized by present-
ing a mean square displacement as a function of time.
Initially, the displacement shows a diffusive behavior,
which a ballistic one then replaces. Finally, the displace-
ment manifests itself again as diffusive. Transitions from
motionless to traveling LS have also been observed in one-
dimensional optical systems [27,28], and two dimensions
optical [29] and gas discharge experiments [2]; the study of
running and tumbling of two-dimensional localized struc-
tures is in progress. Model Eq. (1) describes an optical
valve with optical feedback [10]; this is a flexible experi-
ment where the running and tumbling of LS can be studied
in a quasi-one-dimensional configuration.
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