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Optical vortices and lattices of these are attracting the
attention of the scientific community because of their
applications in various fields of optical processing, commu-
nications, enhanced imaging systems, and bio-inspired
devices. Programmable optical vortices lattices with arbi-
trary distributions have been achieved using illuminated
liquid crystals with photosensitive walls. Using an ampli-
tude equation that describes these optical valves close
to the Freédericksz transition allows us to characterize
analytically the vortices and the lattices they form. The
numerical simulations of the amplitude equation, analyt-
ical solutions, and experimental observations show good
agreement. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.002947

Optical vortices are point phase dislocations; that is, they are
singular points where the electromagnetic field goes to zero and
around which the phase distribution forms an N -armed spiral,
with N being the topological charge [1–3]. In the last decade,
optical vortices have attracted attention for their diverse pho-
tonic applications [4], ranging from the interchange of angular
momentum between light and matter [5], optical tweezers
[6–8], quantum computation [9], enhancement of astronomi-
cal images [10], the generation of optical beams by micro/nano
patterned in liquid crystals [11–16], and data transmission
[17]. In all these applications, optical vortex lattices are always
involved and required, because they contain multiple optical
vortices that supply information, flexibility, and manipulation
[17–19]. Indeed, the generation, detection, and manipulation
of optical vortex lattices are of fundamental relevance in the
research described and in future optical applications. The reali-
zation of programable lattices of optical vortices with arbitrary
distribution in space was demonstrated by exploiting reorienta-
tional nonlinearities in the nematic liquid crystal layer of a light
valve [20]. The vortex arrangements were determined qualita-
tively on the basis of consistent topological rules governing
light-induced matter defects of both signs. When a liquid crys-
tal light valve is illuminated by a Gaussian beam, a vortex in the

molecular orientation (umbilic defect) is induced [21,22]. The
umbilical defects are topological charges �1.

In this Letter, we establish analytically the origin of the vor-
tex lattices observed in illuminated liquid crystal layers with
photosensitive walls. Using a topologically driven Ginzburg–
Landau equation that describes illuminated liquid crystal
light valves close to the Fréedericksz transition, we model
the vortices and the lattices they form. Figure 1 shows typical
experimental, numerical, and analytical vortex lattices of an
illuminated liquid crystal light valve. The numerical simula-
tions of the amplitude equation, analytical solutions, and
experimental observations show good agreement.

The liquid crystal light valve is composed of a thin nematic
liquid crystal film sandwiched between a glass and a photocon-
ductive plate. The liquid crystal light valve is filled with a nem-
atic mixture exhibiting negative dielectric anisotropy. The
transparent interfaces are treated in order to provide a homeo-
tropic alignment of the liquid crystals, that is, close to the walls,
the liquid crystal molecules are perpendicular to the confining
layers, one of which is the photoconductive slab. The director
~n�z, x, y, t� accounts for the orientational organization of the
molecules, where z and fx, yg, respectively, are the longitudinal
and transverse coordinates. Owing to the photoconductive sub-
strate and transparent electrodes, when the liquid crystal light
valve is illuminated, the effective voltages V �z, x, y� drop across
the liquid crystal layer which acquires a profile proportional
to the light intensity I�x, y� on the liquid crystal layer,
V �z, x, y� � z∕d �V 0 � αI�x, y�� [21]. Where V 0 is the voltage
applied to the liquid crystal light valve, d and α are the thick-
ness of the valve and the phenomenological dimensional
parameter, respectively, that describe the linear response of
the photoconductor.

The elongated molecules of the liquid crystal start to reor-
ient as a result of the torque exerted by the induced electric field
and tend to align perpendicularly to it. The homeotropic state,
~n � ẑ, undergoes an stationary instability for a critical voltage.
Indeed, this molecular reorientation instability corresponds to
the Fréedericksz transition [23]. Close to this transition, one
can use the following ansatz for the amplitude of the critical
spatial mode ~n ≈ �u�x, y, t� sin�πz∕d �, v�x, y, t� sin�πz∕d �,
1 − �u2 � v2�sin2�πz∕d �∕2�. Substituting it in the director
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equation—which contains the effects of elasticity and electro-
magnetic couplings—integrating in z coordinate over the
sample thickness and, considering the complex amplitude
A ≡ �u� iv�, after straightforward calculations, one obtains
the topologically driven Ginzburg–Landau equation [20,21]

γ∂tA � μA − aAjAj2 � ∇2
⊥A� δ∂ηηĀ� bI 0eiθ, (1)

where μ�r� ≡ −K 3�π∕d�2 − ϵa�V 0 � αI�2∕d 2 is the bifurca-
tion parameter; a≡−�K 3�π∕d�2∕4�3ϵa�V 0�αI�2∕4d 2�>0
is the nonlinear response; b ≡ 2ϵadαV 0∕π, ∂η ≡ ∂x � i∂y,
and δ ≡ �K 1 − K 2�∕�K 1 � K 2� stand for the anisotropy
elasticity of the system; θ is the amplitude phase; I 0≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�∂xI�2 � �∂yI�2
q

; γ is the rotational viscosity; and fK 1,K 2,

K 3g are the elastic anisotropy constants of the liquid crystal.
The numerical simulations of the amplitude Eq. (1) with a

forcing term consisting of a superposition of Gaussians equiv-
alent to illuminating the optical valve with several light beams
give vortex lattices as a stable equilibrium. The middle panels of
Fig. 1 show the typical lattices. Circles account for the waist of
the Gaussian forcing. When the liquid crystal light valve is

forced with a single beam of sufficiently intense light, it always
induces a vortex of positive charge at the center of the beam
[22]. This result is easily understood as a consequence of the
voltage induced by a single ray being an electric field with a
positively charged vortex [21]. Figure 1 shows the vortices in-
duced by a green laser. Illuminating the sample with a red laser,
we analyze other areas of response of the optical valve. In the
case of two light beams, the positive charges must be accom-
panied by negative charges, since the total topological charge
must be conserved. To characterize analytically the origin of
these vortices we assume μ < 0 (i.e., we are below the
Fréedericksz transition) and consider a single ray of light with
intensity I � I 0e−r

2
⊥∕w

2
, where I0 and w, respectively, are the

strength and waist of the light beam, and r⊥ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
is

the radial coordinate with its origin in the center of the beam.
When w ≫ 1, Eq. (1) has the following approximate stationary
solution:

AR�r⊥,ϕ� � −
bI 0�x, y�

μ
eiϕ � 2bI 0

w2μ
r⊥e−r

2
⊥∕w

2eiϕ, (2)
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Fig. 1. Optical vortex lattices in nematic liquid crystals. The left panels correspond to snapshots of vortex lattices obtained in an illuminated
nematic liquid crystal light valve with (a) two, (b) four, and (c) six light beams (courtesy of R. Barboza). The �1 account for the respective topo-
logical charges. The intermediate panels correspond to the numerical simulations of the topological driven Ginzburg–Landau Eq. (1) with μ � −3,
a � 1, δ � 0, and b � 0.1, forced, respectively with (a) two, (b) four, and (c) six Gaussians beams. The right panels correspond to analytical vortex
lattices obtained using formula A � −4b∇r⊥hV i∕α with (a) two, (b) four, and (c) six Gaussians beams. The circles account for the waist of the
respective Gaussian beams.
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where ϕ is the angular coordinate with its origin in the center of
the Gaussian. It can be checked that the error of this approxi-
mate solution is of the order O� 1

w6�; in other words, both the
nonlinear term and the Laplacian are negligible in this limit.
Since AR�r⊥,ϕ� grows linearly around the origin and decays
as a Gaussian, we have called this solution a Rayleigh vortex.
Figure 2 show the surface plot, vectorial representation, and
phase of the Rayleigh vortex. The maximum value h that the
vortex reaches corresponds to vortex height, h�2bI0∕μw

ffiffiffiffiffi
2e

p
,

and the width of the vortex core is l � w∕
ffiffiffi
2

p
. Figure 3 shows a

comparison between the numerical solutions of the topologi-
cally driven Ginzburg–Landau equation (1) and the approxi-
mate solution (2). From this figure, we infer that for the
light beam of the big waist, the Rayleigh vortex is is a very good
approximation of the topologically driven Ginzburg–Landau
vortex. For light beam waists of the order one, the effect of

the Laplacian and the nonlinear term begins to play a role, and
the Rayleigh solution ceases to be dominant. Experimentally,
the standard width used for the waist of the light beam
(250 μm) is 50 times larger than the length associated with
the elastic constant (5 μm), that is, in our dimensionless units
w � 50. Then, below the Fréedericksz transition, the Rayleigh
vortex describes the umbilical defects.

To explain the origin of Rayleigh vortex, we note that the
liquid crystal light valve is a thin film and, thus, one should
consider averaged quantities. The voltage averaged over the
thickness hV �r⊥�i takes the form

hV �r⊥�i �
1

d

Z
d

0

V �z, r⊥�dz �
V 0 � αI�r⊥�

2
: (3)

Likewise, calculating the electric field averaged in the
vertical direction, we obtain hE�r⊥,ϕ�i � −∇r⊥hV i �
αI0�r⊥∕2w2�e−r2⊥∕w2

eiϕ, where the electric vector is represented
in complex variable notation. Therefore, the Rayleigh vortex is
proportional to the averaged electric field or, equivalently the
gradient of the averaged potential AR�r⊥,ϕ� � 4bhEi∕α �
−4b∇r⊥hV i∕α.

Generalizing the previous analysis, one can consider two
light beams illuminating the optical light valve in different
positions (r1 and r2). The averaged potential hV �r⊥�i �
�V 0 � αI�x, y, r1� � αI�x, y, r2��∕2, where I�x, y, ri� is a
Gaussian beam centered at ri, corresponds to a surface with
two mounds. Since the equilibrium amplitude is the gradient
of the averaged potential, we identify maxima or minima of the
potential with positively charged vortices and the saddle points
with vortices of negative charge. Figure 4 illustrates this in the
case of two Gaussian beams. Note that a negative vortex is
located between the positive vortices. By decreasing the
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Fig. 2. Rayleigh vortex of the topologically driven Ginzburg–
Landau equation (1) with μ � −3, a � 1, δ � 0, b � 1, I 0 � 0.01,
and w � 30. (a) Surface plot of the Rayleigh vortex, Eq. (2).
(b) Vector representation of the vortex solution. The colors show
the magnitude of the amplitude jAj. (c) Counter-plot of the phase
of amplitude A, arg�A� � Im�A�∕Re�A�. (d) Rayleigh vortex profile;
h and l account for the height and width of the core of the vortex,
respectively.

Fig. 3. Log-log plot of the height of the vortex as a function of beam
waist w. The heights obtained by numerical simulation of the topo-
logically forced Ginzburg–Landau Eq. (1) (crosses) with μ � −3,
a � 1, δ � 0, b � 1, and I 0 � 0.01 are compared with h �
2bI0∕μw

ffiffiffiffiffi
2e

p
(continuous line).
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Fig. 4. Analytical vortices induced by two Gaussians. The total
topological charge is N � 1. The complex amplitude A was obtained
using formula A � −4b∇r⊥hV i∕α. The left panels correspond to the
vector representation of the complex amplitude. The colors account
for the magnitude of the amplitude. The contour plot of the phase
of the amplitude is shown on the left panel. (a), (b), and (c) correspond
to Gaussians with different distances.
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distance between the centers of the Gaussians, the charges ap-
proach each other [see Fig. 4(b)]. When this distance is of the
order of the beam waist, the vortices merge, leaving a single
vortex of positive charge [see Fig. 4(c)]. Based on the same strat-
egy, one can build configurations with more Gaussian beams
using the formula A � −4b∇r⊥hV i∕α. Figure 1 (right panels)
shows vortex lattices obtained by superposing two, four, and six
equally spaced Gaussian beams. An excellent agreement is
observed with the vortex lattices obtained by numerical simu-
lations of the topologically driven Ginzburg–Landau equa-
tion (1). Likewise, there is excellent agreement with the
experimental observations. However, due to the anisotropic
effects that are not accounted for in the Rayleigh vortex
approximation, the experimental positive vortices exhibit swirl-
ing arms [24]. Note that in the case of four light beams, the
averaged potential has four saddle points on the sides of the
square formed by the maxima and a minimum on the intersec-
tion of the diagonals. This explains why in the experiment a
swirling vortex is induced on the diagonal between the topo-
logically forced vortices [see the left panels of Figs. 1(b)
and 1(c)].

In conclusion, we have been able to establish analytically the
origin of the vortex lattices observed in illuminated liquid crys-
tal layers with photosensitive walls below the Fréedericksz tran-
sition. The numerical simulations of the amplitude equation,
analytical solutions, and experimental observations show good
agreement. When the system is above the molecular reorienta-
tion transition, the elastic couplings (taken into account in (1)
by the Laplacian and the second-order differential operator de-
scribing anisotropic spatial variations with δ ≠ 0) determine
the vortex core size, which is now of the order of few microns.
In this regime, the Rayleigh vortex does not account for the
observed vortices. However, the position and configuration
of the vortex lattices are qualitatively described by the lattices
of the Rayleigh vortices. The amplitude equations describe
qualitatively and quantitatively the dynamics near the instabil-
ity point. However, these equations qualitatively describe the
dynamics away from the bifurcation point [2,25]. Hence, ana-
lytically presented findings are valid far from the Fréedericksz
transition.

At the onset of the Fréedericksz transition, depending on the
light intensity, the vortices positioned in the center of the light
beam can undergo instabilities and move to dark areas (the area
outside the illuminated region). These new topological defects
known as the shadow vortices [26] are characterized by having
an exponentially small height. Experimentally they are detected
indirectly. The lattice created by these and the induced vortices
is a problem currently in progress.
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