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Motivation

The Big Bang theory and inflation period predicts CMB and LSS observations as con-
sequences of gaussian and scale-invariant perturbations in the primordial universe.

The best way of describing this phenomena is through a scalar field called inflaton.
One reason to study these perturbations is that large fluctuations of ζ, the curvature
perturbation, can induce overdense regions with matter and produce primordial black
holes (PBH) that are dark matter candidates [1]. Also, this perturbation can interact
with other fields in multi-field models.

Considering more than one scalar field and solving the right action, leads to equations
of motion for perturbations [2] that can be written in terms of Bogoliubov coefficients
αXi, βXi. We solve numerically the equations of motion of the coefficients and we
study its behavior and its impact on observable quantities as the primordial power
spectrum.

Equations of motion

To study the scalar power spectrum, and in future works GW spectrum, we define the
gauge invariant quantum operators at linear order to each field [3]

ζ̂(k⃗, τ ) =
H√
2k3

∑
i=1,2

[αζi(τ )ζ(kτ ) + βζi(τ )ζ
∗(kτ )]âi(k⃗) + h.c.(−k⃗), (1)

ψ̂(k⃗, τ ) =
H√
2k3

∑
i=1,2

[αψi(τ )ψ(kτ ) + βψi(τ )ψ
∗(kτ )]âi(k⃗) + h.c.(−k⃗), (2)

where ζ(kτ ) = (1 + ikτ )e−ikτ and ψ(kτ ) = i
√π

2(−kτ )
3/2H

(1)
ν (−kτ ), with Hν the

Hankel function, are the massless and massive field (with mass µ) dS mode functions
respectively, with ν =

√
9/4− µ2/H2. Both modes satisfy Bunch-Davies initial condi-

tions at kτ = −∞.

The Bogoliubov coefficients obey the following equations of motion

d

dτ

(
αζi
βζi

)
= A(k, τ )

(
αψi
βψi

)
,

d

dτ

(
αψi
βψi

)
= B(k, τ )

(
αζi
βζi

)
, (3)

where i = 1, 2. The initial conditions at τ = −∞ are satisfied imposing: αζ1 = αψ2 = 1
and the rest equal to zero. The coefficients matrices are given by

A(k, τ ) = −iη⊥(τ )
k3τ3

(
ζ∗′ψ ζ∗′ψ∗

−ζ ′ψ −ζ ′ψ∗
)
, B(k, τ ) = i

η⊥(τ )
k3τ3

(
−ζ ′ψ∗ −ζ∗′ψ∗
ζ ′ψ ζ∗′ψ

)
, (4)

where η⊥(τ ) can be any time-dependent function that represent the turns in field
space, and allows us to induce the excitation of modes through the mixing of Bo-
goliubov coefficients.

We solve numerically these coupled differential equations in this regime for a top-hat
function expressed in e-folds

η⊥(N) = Π[δ(N −Nfeat)] · γ, (5)

where Nfeat = 16, Π is the rectangular function, δ and γ are the width and the ampli-
tude of the turn respectively.

Then, we compute the primordial power spectrum in terms of Bogoliubov coefficients,
which is given by

∆ζ(k) ∝
∑
i=1,2

∣∣αζi(k) + βζi(k)
∣∣2 . (6)

Results

To generate PBHs the scalar power spectrum must grow several orders of magnitude compared
to that observed by Planck telescope, getting this we proceed computing the number of excited
states and analyzing the Bogoliubov coefficients
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Fig. 1: Scalar power spectrum of (6) obtained using γ = 15 and (3)-(4). The dashed red line show the extrapolation of ∆ζ observed by

Planck telescope. The blue area indicate the inferior limit needed to form an interesting number of PBHs.
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Fig. 2: Number of excited states calculated as nX(k) =
∑

i |βXi|2, for the same cases of Fig 1.

Fig. 3: Numerical solution of αζ2, with the blue line the real part and the red line the imaginary part. The zoom show the oscillations

present in all the coefficients, with similar shapes and magnitudes.

All the coefficients present oscillations in k ∈ {107, 109}, but the imaginary part of
α, βζ2 and α, βψ1 shows large tails of ±4× 104.

We can not see substantial differences between nζ and nψ and they follow similar
behaviours as the scalar power spectrum with the same δ.

The tails of the β coefficients mentioned contribute to the number of excited states
on large scales, reaching values nX ≳ 109 for any value of δ, but, because these
coefficients at k ≈ 3× 108, β ∼ 1 and for k ≈ 2× 109 suddenly takes the exact value
0, nX decrease rapidly for small scales.
[]

Conclusion

Using the turning rate of the scalar fields η⊥ to excite the quantum modes, we find
that a brief, but large, turn is enough to get a ∆ζ > 10−2 that, according to [4], is the
limit to have a considerable number of PBH.

One way to see that is by assuming that ζ has a Gaussian distribution, so the vari-
ance [5] is calculated as

σ2 :=

∫
dk k∆ζ(k), (7)

that tell us that with a greater ∆ζ , there are more possibilities of having larges ζ that
could produce gravitational collapses and form black holes.

As we said, the spectrum of GWs, induced by the existence of excited states, can
also be computed using these coefficients [3]

Pout
t (k) =

∫ ∞

1
ds

∫ 1

0
dd

∣∣∣∣α(
k

2
(s + d)

)∣∣∣∣2 ∣∣∣∣α(
k

2
(s− d)

)∣∣∣∣2F (x, y, k). (8)

In conclusion, with the code used to get the solutions presented, we can calculate (6)
and (8) to any form of η⊥ used to excite the modes, inclusive to a single-field model
(null entropy mass, µ = 0).

Hence, with future observations of the scalar power spectrum we can vary the pa-
rameters of the turning rate until (6) fit the data, and in this way use the Bogoliubov
coefficients obtained to calculate, for example, Pout

t .

The definition of the quantum operators ζ̂ , ψ̂ as linear combinations of the Bogoliubov
coefficients allow us to find, in the future or in present works, simpler expressions
of other cosmology observables that could be computed numerically and, in some
cases, find analytical expressions of these coefficients using fitting methods.
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