

Auxiliar Extra C2

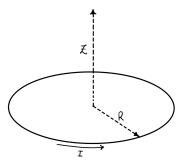
Biot-Savart y Ley de Ampere

Profesor: Simón Riquelme

Auxiliares: Antonia Cisternas, Javier Huenupi Ayudante: Bruno Pollarolo

P1.- Biot-Savart

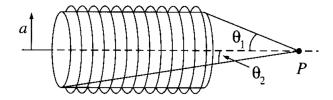
Calcule el campo magnético a una distancia z sobre el centro de un círculo de radio R, el cual lleva una corriente I (homogénea en todo el loop) en el sentido antihorario (ver figura)



P2.- Biot-Savart

Calcule el campo magnético en el punto P ubicado en el eje central de un solenoide, constituido por un alambre que lleva una corriente I (homogénea) y que está enrollado formando un cilindro de radio a con n vueltas por unidad de longitud (n sería la densidad de loops). Exprese su resultado en términos de θ_1 y θ_2 (ver figura).

Finalmente, calcule el campo magnético en P considerando un solenoide de longitud infinita (en ambas direcciones).

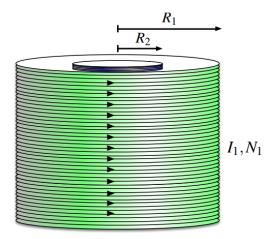


Auxiliar Extra C2

P3.- Ley de Ampère

Considere dos bobinas muy largas de radios R_1 y R_2 , con N_1 y N_2 vueltas por unidad de largo, respectivamente. La bobina de radio R_2 se encuentra inserta dentro de la bobina de radio R_1 compartiendo su mismo eje. Si por la bobina exterior circula una corriente I_1 , determine:

- a) La corriente I_2 que circula por la bobina interior, sabiendo que el campo magnético para $r < R_2$ es nulo.
- b) Para la corriente encontrada en la parte anterior, encuentre la fuerza por unidad de área que siente la bobina interior.



Formulario

Biot-Savart

En el caso estacionario (steady current, $\partial \rho/\partial t=0$) podemos calcular el campo magnético generado por una corriente usando:

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{I} \times (\vec{r} - \vec{r}')}{(\vec{r} - \vec{r}')^3} \, dl'$$

$$= \frac{\mu_0}{4\pi} \int \frac{\vec{K}(\vec{r}') \times (\vec{r} - \vec{r}')}{(\vec{r} - \vec{r}')^3} \, da'$$

$$= \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r}') \times (\vec{r} - \vec{r}')}{(\vec{r} - \vec{r}')^3} \, d\tau'$$

donde \vec{I} , \vec{K} , \vec{J} son densidades de corriente lineales, superficiales y volumétricas respectivamente. Eligen la fórmula según el tipo de corriente que tengan en el problema.

Auxiliar Extra C2 2

Auxiliar Extra C2

P1

Usammos un sistemma de coordenadas cilíndrico para calcular el campo magnético con Biot-Savart, en este caso tenemos una corriente de línea, entonces

$$\vec{B}(\vec{r}) = \mu \int \frac{\vec{I}(\vec{r}') \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} d\ell' \quad (1)$$

donde \vec{r}' nos indica la posición de la corriente que integramos en la línea ℓ' . Identificamos cada parte por separado

$$\vec{r}' = \vec{p}' \hat{p}' + \vec{z}' \hat{k}' = \hat{R} \hat{p}'$$
, ya que solo tenermos corriente a una distanca $\vec{p}' = \hat{R}$ y en $\vec{z}' = 0$

$$ightarrow$$
 $\vec{\mathrm{I}}(\vec{r}')$ = $\vec{\mathrm{I}}$ $\hat{\phi}'$, la cornente es hormogénea

$$Pdl' = Pd\phi' = Rd\phi'$$
, donde $\phi \in (0, 2\pi]$

Reemplacemos en (1)

$$\Rightarrow \vec{B}(\vec{x}\vec{k}) = \mu_{o}\vec{I} \int_{0}^{2\pi} \frac{\hat{\phi}' \times (\vec{x}\vec{k} - R\hat{\rho}')}{(\vec{x}^{2} + R^{2})^{3/2}} Rd\phi'$$

$$= \underbrace{\mu T}_{4\pi} \frac{R}{(\mathcal{Z}_{+}^{2} R^{2})^{3/2}} \left[\mathcal{Z} \int_{0}^{i\pi} \hat{\rho}^{i} d\phi^{i} + R \int_{0}^{i\pi} \hat{k}^{i} d\phi^{i} \right]$$

Recordamos que \hat{k}' = \hat{k} no depende de la coordenada ϕ' , pero $\hat{\rho}'$ si

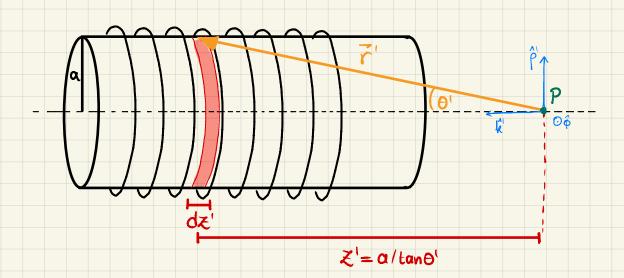
$$\hat{\beta}' = COO^{\dagger} \hat{i} + SinO^{\dagger} \hat{j}$$

$$\Rightarrow \vec{B}(\vec{z}|\hat{k}) = \mu \vec{I} \frac{R}{4\pi} \frac{R}{(\vec{z}' + R^2)^{3/2}} \left[\vec{z} \int_{0}^{2\pi} (COO^{\dagger} \hat{i} + SinO^{\dagger} \hat{j}) d\phi' + 2\pi R |\hat{k}'| \right]$$

$$= \mu \vec{L} \frac{R^2}{2\pi} \hat{k} \hat{k}$$

$$= (\vec{z}' + R^2)^{3/2}$$

P2



El compo mognético en P puede ser calculado ocupomdo Ley de Ampere (y un parde argumentos písicos), pero ahora lo calculare-mos con Biot-Savart donde tenemos una corriente lineal, pero como los veltos del alambre están tom juntos, podemos considerar una densico de corriente experpicial dada por $K = I \cdot n$

$$\vec{B}(\vec{r}) = \mu \int \frac{\vec{K}(\vec{r}') \times (\vec{r} - \vec{r}') da'}{|\vec{r} - \vec{r}'|^3} da'$$

identificarmos cada parte de (1)

$$\vec{r} - \vec{r}' = -\alpha \hat{\rho}' - \alpha / \tan \theta' \hat{k}' \implies |\vec{r} - \vec{r}'|^3 = (\alpha^2 + \alpha^2 / \tan^2 \theta')^{3/2} = \alpha^3 / \sin^3 \theta'$$

$$\triangleright$$
 $\vec{K}(\vec{r}')$ = \vec{I} $\hat{\phi}'$, el sontido de \vec{K} está dado por el signo de \vec{I}

$$da' = \rho d\phi' dz' = a d\phi' \cdot \left(-\frac{a}{\sin^2 \theta'} d\theta' \right) = -a^2 d\phi' \frac{d\theta'}{\sin^2 \theta'}, donde \phi' \dot{e}(0, 2\pi) \quad \dot{\theta} \cdot \dot{\theta}$$

Reemplagamos en (1)

$$\Rightarrow \hat{B}(\vec{0}) = \underbrace{\mu}_{4\pi} \int_{\theta}^{a} \int_{0}^{\pi} \left[\hat{I} n \hat{\phi}' \times (-a\hat{\rho}' - a/\tan\theta' \hat{k}') \right] \underbrace{\frac{|\vec{r} - \vec{r}|^{2}}{a^{3}}}_{\text{Sin}^{2}\theta'} \cdot \left(-\frac{a^{2} d\phi' d\theta'}{\sin^{2}\theta'} \right)$$

=
$$\mu$$
. $\frac{In}{4\pi} \int_{0}^{\theta_{1}} \int_{0}^{2\pi} \hat{\phi}^{\dagger} \times (a\hat{\rho}^{\dagger} + a/tan\theta^{\dagger}\hat{k}) \sin\theta^{\dagger} d\phi^{\dagger} d\theta^{\dagger}$

$$= \underbrace{\mu_o}_{4\pi} \operatorname{In} \left[- \int_{\theta_0}^{\theta_0} \int_{0}^{\pi} k' \sin \theta' d\phi' d\theta' + \int_{\theta_0}^{\theta_0} \int_{0}^{2\pi} \frac{\hat{\rho}'}{\tan \theta'} d\phi' d\theta' \right]$$

al igual que en el problema anterior, la segunda integral se anula al pasor p'a cartesianos. Por lo que nos quida

$$\Rightarrow \vec{B}(\vec{0}) = -\underline{\mu}_{0} \quad \text{In} \int_{0}^{\theta} \sin\theta' d\theta' \int_{0}^{\pi} d\phi' \vec{k}'$$

$$= \underline{\mu}_{0} \quad \text{In} \quad \cos\theta' = \frac{\theta}{2} \quad \vec{k}' = \underline{\mu}_{0} \quad \text{In} \quad (\cos\theta_{2} - \cos\theta_{1}) \vec{k}$$

Ahora, si consideramos el solenoide infinito, digarmos que nuestro punto P está "justo al medio" de este cilindro infinito, nuestro ángulo inicial de integración θ_1 sería $\theta_1=\pi$ y $\theta_2=0$

$$\Rightarrow \vec{\delta}(\vec{0}) = \mu_0 \operatorname{In} (1+1) \hat{k} = \mu \cdot \operatorname{In} \hat{k}$$

Sin embargo, en un cilindro infinito todos los pontos serían justo al medio) del solenoide y como a<<0, entonces en todos partes al interior de un solenoide infinito el campo valdría