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ABSTRACT 

 

The traditional formulation of logit models applied to transport demand assumes a 

compensatory (indirect) utility function, that is, the consumers strategy assumes trade-

off between attributes. Several authors have criticized this approach because it fails to 

recognize attributes thresholds in consumers’ behavior, or a more generic domain where 

such compensatory strategy is contained. In this paper a mixed strategy is proposed, 

which combines the compensatory strategy valid in the interior of the choice domain 

with cutoff factors that restrain choices to the domain edge. The proposed CMNL model 

combines the multinomial logit model with bi-nomial logit factor that represent soft 

cutoffs. This approach extends previous contribution by allowing multiple dimensions 

for cutoff factors, but also introduce system constraints such as capacity and inter agents 

interactions (choice externalities). The analysis of this model includes a method to solve 

the non-linear fixed point problem that arises when system constraints are considered 

and a set of evaluation tools: a social utility of the constrained problem and a measure of 

the shadow price of each constraint.          
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INTRODUCTION 

 

Following Domencich and McFadden’s book (1975), the random utility model assuming 

a Gumbel distribution for utilities has been widely applied in urban studies, producing 

an extensive literature of logit models based on different covariance matrix structures, 

such as Multinomial, Nested and Mixed logit models, among others. The main 

microeconomic underpinning assumption of these models is the compensatory strategy 

followed by individuals, i.e. their decision strategy assumes trade-off between attributes.  

This assumption has been criticized by several scientists who claim that a non-

compensatory behavior is potentially more realistic, as for example the elimination-by-

aspect (EBA) process (Tversky, 1972). A natural approach to relax the compensatory 

assumption, proposed by Manski (1977) and followed by Swait and Ben-Akiva (1987), 

Ben-Akiva and Boccara (1995), Cantillo and Ortúzar (2004), among others, is to 

explicitly model the choice set generation process using a two-stage approach: first, the 

feasible choice set is generated for each individual and, second, a compensatory model 

calculates the choice probability conditional on the choice set. The appealing of this 

approach is that it permits different models to simulate the phenomena associated to 

each stage (Cascetta and Papola, 2001), but it is computationally complex because the 

number of possible choice sets explodes with the number of alternatives, with a 

maximum of 2m-1 choice sets for m alternative options. Heuristic approaches has been 

proposed to reduce this difficulty, as the pair wise comparisons of alternatives suggested 

by Morikawa (1995). However, the choice set formation process is not sufficiently 

efficient if the number of alternatives is large, like in the case of spatial choices (e.g. trip 

destination and location choices), and not applicable in more complex processes 

involving intensive choice making calculations, like equilibrium and optimization 

processes.     

 

The model proposed by Cascetta and Papola (2001) extends the compensatory utility 

function in order to simulate (rather than generate) the perception/availability of an 



alternative implicitly, leading to a one-step approach named the implicit 

availability/perception model (IAP). In this model the choice-set of alternatives is a 

fuzzy set, where each element has a degree of membership to the choice set; thus, the 

choice-set is “soft”2 rather than “crisp”.  

 

Swait (2001) models choice behavior incorporating a wide range of decision strategies 

using an alternative approach. He extends the standard deterministic utility 

maximization problem by including constraints on the values that the attributes and 

prices can attain for a choice to be feasible, which define a set of lower and upper 

bounds or cutoffs for each alternative. These constraints represents a feasible domain 

where the individual is willing -or can- make choices, with attributes bounds 

reproducing ideological cutoffs, (for example the EBA process), economic constraints 

(e.g. income or time budgets) and physical limits. Thus, the author proposes a flexible 

version of the deterministic utility optimization problem by relaxing constraints, which 

are introduced as linear penalties in the utility function that are activated if cutoffs are 

violated.  

 

As other implicit approaches, the IAP and Swait’s models are a one-step method based 

on a “reduced” form model of behavior. The underpinning rationale is given by Swaits: 

“it is behaviorally equivalent whether the decision-maker simply chooses the best good 

that satisfies the constraints, or alternatively, first screens based on constraints, then 

chooses the best alternative”. While we share this statement, Swait’s model can be 

criticized because it introduces a linear relaxation to cutoffs, which means that at the 

cutoff the utility functions “kinks” (changes the slope) because the penalty is activated. 

Such kinks makes the utility function non-differentiable at the cutoff, introducing a 

difficulty in certain complex calculation processes, like equilibrium and optimization 

processes, or in systems with large number of agents making choices on choice-sets that 
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change their attributes in the process (like price adjustment to equilibrium); conversely, 

the IAP model may be specified to avoid such difficulty.  

 

The constrained logit model (CLM) proposed in this paper combines aspects of Swait’s 

and the IAP model. It follows a one-stage approach using a reduced utility function that 

implicitly imposes cutoffs to choice makers. Our constrained utility function is similar to 

the IAP model in that applies the bi-nomial logit to simulate soft cutoffs by a continuous 

and differentiable extended utility function. However, we simulate a full set of 

constraints on attributes and prices, so the CLM constrains choices to a multi-

dimensional domain. We also advance the analysis for the case of a multinomial version 

of the CLM, denoted CMNL. For this model we study the more complex case of system 

constraints, where alternatives’ attributes depend on the choices potentially made by the 

whole population of decision-makers. In this case, these cons traints introduce 

endogenous variables in the forecasting process to represent the complex issue of 

externalities in consumption.  

  

The CLM’s theoretical framework is presented and discussed in the following sections. 

Next we present and analyze the choice probabilities for the special case of the 

multinomial logit, which defines the constrained multinomial logit model (CMNL). 

Then, we study the use of the CMNL to forecast choices, with focus on the non-linear 

effect introduced by endogenous constraints. This model is then further studied to 

produce two evaluating tools: a social benefit measure and the shadow price for each 

constraint. The paper ends with a brief presentation of the wide range of applications of 

the CLM model in spatial studies. 

 

THE CONSTRAINED CHOICE PROBLEM  

 

Consider the following class of optimization problems widely used in microeconomic 

theory to describe agent’s behavior of discrete goods. Each agent n behaves according to 



the (indirect) utility function Un when deciding the best choice among a set of I 

alternatives contained in the set C. Assume that the utility function depends on K-1 

dimensional attributes set, denoted by vector IKRX ×−∈ )1( , and on the alternative price 

,ppm ∈ with vector IRp∈ . We can define a set of attributes/prices cutoffs for the nth 

agent, including a lower and an upper cutoff for each attribute/price k, denoted  by ank  

and bnk respectively, which dictates acceptable attribute/price values. Thus, consider the 

following vectors:    
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This defines the domain Dn for the individual’s feasible choices, with the convention 

that parameters anK  and bnK  are price bounds. Note that bounded parameters are 

assumed independent of the specific alternative, which is a usual case, but this can be 

extended to consider the case of alternatives’ specific bounds. 

  

Then, the rational choice behavior is modeled by the following optimization problem: 
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where niδ  represents the individual’s choice, Xi is the vector of attributes that describes  

alternative i, pi is the price of the alternative and U(X,p) is the indirect utility function. 

The problem maximizes the aggregated utility across the set of chosen alternatives, 

subject to the condition that constraints can not be violated in any chosen alternative. In 

the following we define vector Zi=(Xi,  pi) KR∈ , which contains all attributes (including 



the price) of an alternative. Note that constraints are assumed specific to the choice 

maker; the case of constraints equal to all individual is a special and more simple case of 

problem (2). 

 

It is noteworthy that problem (2) assumes that attributes are exogenous to the choice 

process; below we extend this problem assuming ( )δXX = , named as endogenous 

constraints, which represent choice externalities that are relevant in forecasting demand.  

 

 

THE MULTIDIMENSIONALLY CONSTRAINED UTILITY 

 

Consider now the classical model where the behavior function is a random variable, that 

is nnn VU ε+= , with nV  a systematic compensatory utility and nε  the random term. 

Then, individual’s3 choices are represented by the probabilities associated with the 

distribution of nε  across alternatives in C. The widely used logit model is derived upon 

assuming that random terms are distributed Gumbel, which implies that ],[ ∞−∞∈ε , 

then utilities are unconstrained.  

 

In order to restrain behavior to the individual’s feasible set, our method defines a 

“constrained utility” function that induce the individual to make choices that belong to 

her feasible domain Dn with certain probability. As will be evident later, this probability 

may be as high as desired but not certain, because we allow cutoffs to be violated to 

some extent, such that the probability of choosing an alternative out of Dn is limited to a 

maximum },...,1,{ Kkk == ηη . Additionally, the constrained utility function is assumed 

compensatory in the interior of the individual’s domain, but non-compensatory in a 

vicinity of the domain.  

 



To obtain a utility function constrained to a multi dimensions domain, our approach is 

similar to the IAP model, because we also augment the usual compensatory utility 

function by a new cutoff term, called utility penalty. Thus, a compensatory term (Vc) 

and an additive cutoff term define the constrained utility, as follows:   
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with ε  assumed Gumbel distributed (0, µ ). Notice that the cutoff term is amplified by 

the Gumbel scale parameter, which increases the penalty as the utility dispersion 

increases. Thus, the cutoff term may be understood as a displacement of the systematic 

utility term, or the utility penalty, such that the resulting choice probability complies 

with the cutoff constraint with some given probability η .4 

  

The penalty term contains the generalized cutoff factor niφ , which is defined as a 

composite factor of the set of elementary attributes/price, lower and upper, cutoffs by 

∏
=

⋅=
K

k

U
nki

L
nkini

1

φφφ . Each elementary cutoff factor is defined as a binomial logit function 

because it is an interesting and useful example: it is simple for the presentation of the 

model and it has been similarly used by Swait and Ben-Akiva (1987), Ben_Akiva and 

Boccará (1995)  and Cascetta and Papola (2001), but more importantly, it provides some 

relevant properties when the model is used in studies with endogenous constraints, as 

shown below.  Then: 
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3 We use individual as a general expression for the decision maker, which more generally may be defined 
as an economic agent because we include institutions and companies.  
4 Cascetta and Papola (2001) propose a similar utility penalty but without the µ/1  factor. 
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that represents the elementary lower and upper cutoff factors. Additionally, we define: 
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The performance of other functions may be explored, for example Cascetta and Papola 

(2001) also analyze the Gamma distribution for the single (not composite) cutoff factor.  

 

Observe that the generalized cutoff factor is (quasi) innocuous for any feasible 

alternatives, i.e. those with ni DZ ∈ , because 1→niφ ; conversely, if any element 

nki DZ ∉  then 0→niφ  and the choice probability also tends to zero for this alternative 

performing a soft compliance of the constraint. Also note that each elementary cutoff 

factor in equations (4) may be interpreted as binomial choice with two alternatives: 

respect or violate the specific cutoff. The parameter ω represents the scale factor of the 

binomial logit function that measures the behavior dispersion regarding violation of 

cutoffs. Figure 1 depicts the binomial – lower and upper – cutoff functions, and Figure 2 

shows that the parameter ω controls the softness of the cutoff. The other parameters are 

the cutoff tolerance, with ρ k defined in the same units as the kth variable and η  defined 

as a choice probability tolerance. This tolerance can be as small as desired but not zero, 

implying that the model can not be applied for deterministic compliance of cutoffs; some 

degree of tolerance is structurally imposed. For simplicity in the presentation η  is 

specified constant for all agents, but an individual specific constant is also possible.  

 

 



Figure 1: The lower and upper binomial cutoff functions 
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Figure 2: The effect of the scale parameter on upper cutoff factors  
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Also for simplicity we have considered only one pair of cutoffs (lower and upper) per 

attribute, but our method can include more cutoffs to represent the combined effect of 

more or less binding constraints. Note that in this case of multi-cutoffs for a given 

attribute (either upper or lower bound), the deterministic approach would eliminate all 

but the most binding cutoff, because the rest are zero by definition. However, in our 

stochastic approach even not binding cutoffs have some effect on choices, although the 

most violated have a larger effect. For example, consider the case of an alternative with 

a price close to the self-imposed maximum expenditure, which defines a first cutoff; the 

second, less binding, but stricter cutoff is the individual’s income. The utility will tend to 

be reduced primarily by the fist cutoff, but some extra reduction is produced by the 

second cutoff; these combined effects seems to be plausible in the real context. The 

method may also consider cutoffs defined by a combination of attributes.  

 

Our model can be compared with Swaits’ (2001) model because both models penalize 

utilities of choices out the domain, but while his model assumes a linear penalty function 

ours is non-linear. Indeed, our utility penalty factor is: 
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This penalty is negative (disutility) for all Zi out of the individual’s domain Dn and 

increases exponentially as one (or more) attributes are farther out the domain. Another 

relevant difference is that Swaits’ linear penalty yields a continuous utility function but 

not differentiable at cutoff values of attributes. Conversely, an advantage of the non-

linear approach is that utilities are continuous and differentiable for all RZ ∈ . 

 



At this point we argue, along with other authors previously mentioned, that the 

optimization problem with soft constrained utilities is the natural representation of the 

individual’s choice problem. This argument raises from the observation that in social 

sciences cutoff limits are naturally soft because individual choices are subject to the 

individuals’ perceptions, even in the case of physical constraints as capacity. Then it is 

natural to assume that the behavior associated to cutoffs has a random nature.  

 

The cutoff tolerance parameter θ  may be understood in a dynamic context, because the 

tolerance to accept penalties may be specified as dependent on previous experiences, in 

a way that those individuals that had chosen alternatives in the vicinity of the domain 

limit have a better knowledge of the penalty and the benefits. Thus we can postulate that 

their tolerance is different compared to similar individuals in all aspects except from 

their experience.  

 

 

THE CONSTRAINED MULTINOMIAL LOGIT MODEL (CMNL) 

 

The individual choice problem under the constrained utility function defined in equation 

(3),  is:  
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with C the universal set of alternatives and )( inni Zφφ = . Expression (6) is the reduced 

stochastic objective function that represents an stochastic version of the choice problem 

(2), with V~ the indirect utility function that complies with the problem domain. The 

solution of this problem yields the following constrained choice probabilities: 
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The assumption that the constrained utility is distributed identical and independent 

Gumbel yields the following multinomial probability function:   
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This expression represents a choice probability that complies with the feasible domain 

nD , which tends asymptotically to zero if any of the alternative attributes violates any 

cutoff.  At the very cutoff, the usual compensatory probability is multiplied by tolerance 

probability factors η s. This model, named Constrained Multinomial Logit (CMNL), 

preserves the closed expressions of the equivalent classical compensatory logit models. 

 

Notice that the multinomial model in equation (8) can be formally derived from a joint  

multinomial choice model, where each upper level alternative is conditioned by a lower 

set of binomial models that checks if the alternative belongs to the domain.  

 

It is now important to make same comments regarding calibration methods. First, as in 

the unconstrained multinomial logit model, there is no need to calibrate the parameter 

µ ,  because it is embedded in the parameters of compensatory utility VC and does not 

affect cutoff values. Secondly, the application of usual techniques, e.g. the maximum 

likelihood procedure or the least squares, in the context of parameters of the cutoff 

functions may not be always direct. In their usual application, the parameters adjust the 

model to reproduce observed choices, while cutoff parameters are associated to barely 

observed behavior because since they represent choices theoretically unfeasible. 

Nevertheless, Cascetta and Papola (2001) apply the maximum likelihood method to 



obtain cutoff parameters obtaining a “better” model than the unconstrained, reporting 

highly significant coefficients for parameters associated with cutoff variables.  

 

Since the data required for calibrating cutoff parameters is very specific, reflecting the 

decision maker behavior at each edge of the choice domain, we argue that stated 

preferences (SP) data, specially reporting choice answers at the cutoff vicinity, is more 

adequate to make a consistent application of traditional calibration methods than 

revealed preferences (RP).  

 

 

FORECASTING ISSUES 

 

Individual choices are usually also constrained by two types of system constraints that 

do not affect the model calibration but have a crucial effect on forecasting choices 

because the total demand for alternatives is constrained. We differentiate between two 

system constraints according to their role in the demand model. Type I constraints occur 

by the saturation of the infrastructure capacity –exogenous constraints–, namely road 

and public transport capacity, land space, and numerous policy regulations. Type II 

constraints are individuals’ thresholds on attributes –endogenous constraints–, with 

attributes defined by the outcome of all other consumers’ choices, for example: 

neighborhood quality in residential location choice when quality is defined, for instance, 

by socioeconomic, racial or religious condition of neighbors; in-vehicle congestion in 

transport choice. In economic terminology, Type II are consumption externalities that 

reproduce fundamental, real and complex effects in urban markets.  

 

A large number of Type I system constraints may be expressed by the following (linear) 

expression:  
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where yij are exognous parameters that define the amount of the scarce resource j used if 

alternative i is chosen; Pni is the nth’s consumer probability of choosing alternative i; 

ijij ba ,  are the lower and upper system constraints for the jth capacity in alternative i.  

  

To introduce system constraints Type I in the demand model we apply the reduced (or 

constrained) utility approach that internalizes all system constraints on each individual 

choice process. Again, we define the vector of system constraints for each of the I 

alternatives and  J constraints for each alternative:     
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which define the alternative’s sub-domain iD . We also define the aggregated demand 

for resources j generated by alternative i , given by  ∑=
n

niijij PyPY )( . 

 

The constrained utility function (3) is further augmented by penalties of violating the 

system constraints, yielding: 
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where the system cutoff factor is defined as a function of the choice probabilities on 

alternative i, given by matrix Pi, for all individuals. Additionally, ∏
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The Type II system constraints naturally reproduce consumption externalities because 

they introduce interdependencies in consumption between consumer agents. These 

externalities may affect utilities through change in prices (pecuniary externalities) or 

directly changing attributes (technological externalities). The CMNL model represents 

these externalties by making )(PZZ = , then the system constraint is represented by an 

endogenous cutoffs on these attributes. This type of constraint is well modeled by the 

cutoff factors already defined in equations (4).     

 

The combination of all constraints restricts individual choices probability to the domain 

I
J

j
jnn DDD =~ , which is defined by the augmented constraints vector 
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nn R +∈∪∪∪= θθθθθθ . Then, the CMNL model (equation 8) can be 

extended to recognize system externalities as follows: 
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where P
~  is the constrained choice probability and inini Φ⋅= φφ

~
 is the composite cutoff 

factor including individual and system constraints.  

 

Notice that system constraint effectively makes the individual utility dependent on other 

consumers choices, then dependent on others utility levels, by means of the joint 

consumption of capacity and by consumption externalities. Such interdependency raises 

numerous issues on calibration process, which are beyond the scope of this paper, but it 

also raises the issue of the complexity associated to the forecasting process.  

 

The rest of this section examines the complexity issue in forecasting demand.  Observe 

that equation (14) represents a fixed point problem )(PfP = , a system of NI ⋅  non-

linear equations. In the appendix we prove the following theorem: 

 

THEOREM : (Existence, Uniqueness and Convergence) The CMNL model has a unique 

fixed point solution, and the fixed point iteration converges to the solution if:  
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where { }µωλ ;max=  is the maximum value between dispersion parameters of the 

binomial and multinomial functions. 

 

Proof: See appendix. 

 

These conditions are obtained by imposing on f(P) that the Banach theorem’s is satisfied 

and that its jacobian be less than 1, which is sufficient –although not necessary- 



condition for contractiveness. For each condition we use the co-matrix ∞ -norm and 1-

norm, respectively. The convergence result requires that a minimum dispersion be 

present on individuals’ choice behavior, that is: if the choice process is close to 

deterministic the convergence conditions are not guaranteed. In the theorem such 

condition imposes minimum values for the dispersion parameters ω  and µ  of the 

binomial and multinomial functions respectively.  

 

Observe that if the number of alternatives is very large, probabilities tend to be small. 

Thus, in large problems local conditions are normally satisfied, which means that the 

dispersion parameters are likely to satisfy the bounds. In our extensive simulation 

exercises, with small and large problems, we have obtained a high convergence 

performance considering the complexity of the non-linear system of equations (14). 

 

Nevertheless, the conditions in the above theorem are very strong, because they are 

sufficient condition for constractiveness of the multinomial logit function over the whole 

domain. In fact, violation of these bounds does not necessarily imply lack of 

constractiveness. Thus, a practical use of the bounds for λ  in operational models is as 

control parameters, to check if the conditions are satisfied at each iteration of the 

solution algorithm; if it is not, a warning flag should be raised and the following 

iterations must be analyzed to check if the flag has turned off and the contractiveness 

conditions are recovered.  

 

The theorem constitute a fundamental advantageous property of the CMNL model for its 

applications to forecast urban systems performance. Indeed, under the presence of 

externalities and cutoffs, the market equilibrium problem involves solving complex non-

linear problems. Most applications simply ignore these effects, but this shortcoming 

wrongly assumes that endogenous attributes are exogenous variables, thus results most 

likely violate constraints and miss-calculate utilities. The theorem assures that the fixed 

point algorithm converge to the unique solution under certain (normally satisfied) 



conditions. The theorem may be extended to other logit structures, for example  the 

Nested and Mixed Logit, which  also remains for further research.  

 

 

EVALUATION TOOLS 

 

The above defined CMNL model is used in this section to derive two evaluation tools. 

The first one is a measure of the social benefit associated to choices made, defined as the 

maximum expected individuals utilities aggregated across the population. The second 

one measures the social cost of policies that constrains consumption (e.g. capacities and 

regulations), measured as the shadow price of each elemental constraint. 

   

Consider the CMNL utility, equation (11), evaluated at the demand solution, that is at 

the forecast of the utility level and demand for alternatives. It is possible to examine the 

expected maximum utility level that the consumer can obtain from the subset nD~ , which 

is given by the following logsum formula: 

 

 



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/ µφ
µ

 (14) 

 

This equation measures the individual’s maximum expected benefit obtained from the 

choice-set C, which we use to analyze the impact of urban policies on individuals’ 

satisfaction. An aggregate utility across N consumers associated to the alternatives set C  

is:  
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which represents the utilitarian social measure of the consumers’ benefits; this measure 

ignores distribution issues5. Notice that the domain of  this social utility function is 

U
N

n
nC DD

~~
=  defined by the augmented vector  NIK

C
n

nC R ⋅+∈= )2(~
;

~~
θθθ U . Notice also 

that the parameter µ  is normally unknown in applied MNL models, because it is 

theoretically embedded in the parameters calibrated for of compensated utility 

VV C ~ˆ µ= , then in this case the parameter µ  can be correctly assumed equal to one. 

Equation (15) provides a measure of the social benefit yield by given urban system, 

which can be used for evaluating different scenarios of the urban system, for example to 

evaluate land regulations in location choice process and transport policies that affect 

demand of specific transport modes.    

 

From the social benefit one can derive the marginal social utility of violating a given 

constraint, or the value of loosen the constraint marginally, which is known as the 

shadow price of the constraint. Then, the shadow price ( jS ) associated to the  jth 

constraint, denoted Cj θθ
~~

∈ with l=1,...,L and L=(2K+I), is calculated as the marginal 

utility of relaxing the constraint. Then: 
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Again, in applied studies the scale parameter µ  is assumed equal to one. 

 

This result shows that the shadow price is strictly non-negative and increases as demand 

for alternatives close to the edge of the domain increases, because cutoff factors tends to 

zero so the term in parenthesis and Sj  are strictly positive in that case. Conversely, if the 

                                                                 
5 Distributions with different equity criteria can be introduced by adding differentiated social values for 
consumers’ benefits. 



choice pattern is sufficiently far from the cutoff in the interior of the domain, shadow 

prices tend to zero, which is consistent with the theoretically expected shadow price for 

not binding cutoffs.  

 

The terms in brackets recognize that our model includes multiple constraints – 

individual thresholds and system capacities- potentially interdependent; if they were 

independent then the cross-derivatives are equal to zero and the shadow price is only 

dependent on the corresponding cutoff. This is a relevant point because cross 

dependency between cutoff is likely to occur. Think for example on the effects of 

increasing the level of the individual’s acceptance of travel time by car, then more users 

are expected to show up in congested roads, thus increasing the level of congestion and, 

therefore, increasing the shadow price of road capacity constraints. Another example is 

in land use, where a stronger zone regulation, like the minimum density, induce several 

effects on land values and location patterns, which may activate residents thresholds on 

neighbor environment. 

 

 

APPLICATIONS 

 

The application of constrained logit models covers the whole range of discrete choice 

processes in economic systems, where endogenous and exogenous, individual and 

system, constraints are numerous.  

    

In modeling the transport system the model can be applied both for demand and supply 

choices. In travel demand, usual cutoffs are budget and time resources, which are 

assumed exogenous in the context of transport decisions. Examples of endogenous 

cutoffs are associated with several attributes: minimum activity level at destination for 

attracting trips, maximum spent on travel, waiting and access times to public transport. 

Another cutoff is the maximum walking limit, which may be taken as exogenous for 



handicapped and elderly, or as endogenous for other travelers. In vehicle route 

assignment models, road and vehicles capacities are exogenous cutoffs, while time at 

traffic jams is endogenous. 

 

In location and land use modeling cutoffs are particularly relevant. Real estate attributes 

are usually numerous, then attribute thresholds are also numerous and diverse. Relevant 

location options is another interesting case, because agents are likely to have cognitive 

constraints to evaluate all alternative zones in a city, hence cutoffs help to model this 

issue more realistically by restraining the scope of the spatial search. A similar argument 

applies for the destination choice in the travel demand model. The non-negative profit 

constraint for the real state production model is an economic reasonable assumption for 

the behavior of suppliers, in addition to planning regulations which represent the most 

numerous and diverse set of constraints for real estate supply.       

 

 

CONCLUSIONS 

 

Advances in discrete choice modeling has not stopped in the last three decades, but 

challenges to replicate the actual behavior of agents are still very open. Better techniques 

are clearly needed to deal with the high complexity of this problem and more specific 

models are required for the large variety of applications. Thus, models that explicitly 

incorporate specific and complete sets of constraints to the choice process are clearly 

relevant.  

 

This paper proposes a method that builds upon previous techniques to make random 

utility models more realistic, by adding to the theoretically sound compensatory utility 

functions, the additional flexibility to cope with constraints to individuals’ behavior. One 

advantage of this method is that it does not impose any limitation on the compensatory 

utility function, contrarily, it enhanced any function in its domain border.  



 

Our method was applied to multinomial logit models and has the following 

characteristics. Physical and economical constraints (called exogenous) and attributes 

thresholds (endogenous constraints) are modeled as soft cutoffs controlled by a 

stochastic compliance tolerance. Appropriate cutoff factors reproduce the wide range of 

individual and system constraints.  A new reduced utility function is maximized yielding 

a multinomial logit probability function, where usual compensatory utilities are replaced 

by the new constrained utility. The results is the constrained multinomial logit model 

(CMNL) that preserves the close form of the MNL model, allowing the choice domain 

to be constrained by as many cutoffs as required, limiting both upper and lower levels of 

variables. The paper also analyses the use of the model for the forecasting application, 

because several cutoffs introduce extra complexity in solving the model to find the 

demand. The solution problem has a fixed point whose existence and uniqueness is 

proved; we also prove that fixed-point iteration converges to the solution. Our empirical 

tests show that convergence is highly efficient for the complexity of the non-linear 

equations involved.   

 

The CMNL model provides an enhanced application of the random utility model for 

discrete choice modeling, which constrains utility to a more realistic domain yielding 

also more realistic choice probabilities.  The model also produces two evaluation results. 

One is a social benefit measure for constrained setting and the other one is the shadow 

price for each cutoff. These are useful tool for the economic evaluation of policies 

affecting perceptions of attribute cutoffs (for example by education champagnes) or 

system capacities.     
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APPENDIX 

 
In this appendix we prove the theorem of existence, uniqueness and convergence of the 
fixed point problem associated with choice externalities.  
 
THEROEM A1: (Existence of endogenous cutoffs solutions):   
 
The CMNL model has a fixed Point solution. 
 
 Proof:  
 A direct application of the Brower’s fixed point theorem yields this result. 
 
 
THEROEM A2:(Convergence of endogenous cutoffs fixed points):   
 
The CMNL model has a unique fixed point solution, and the fixed point iteration 
converge to the solution if one of the following conditions holds: 
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where { }jjkk wmaxwmaxmax ;;µλ =  is the maximum scale factor over utility and cutoff 
distributions. 
 
 Proof: 
 
 If some of the conditions holds, then the jacobian of the logit function presented 
in equation (13) has norm less than one. On the first condition it is true for the matrix ∞-
norm and on the second for the matrix 1-norm. This means that the function is 
contractive and an application of the Banach fixed point theorem yields the result. 
 
 Now we calculate the two jacobian norms to obtain these conditions. The two 
jacobian norms are the following: 
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where f is the MNL function presented in equation (13) and P is the MNL probability. 
The f function is such that: 
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where i
zδ  equals 1 iff i=z and 0 otherwise. 

 

Successive applications of the triangular inequality, the fact that 1≤− ••
LU φφ  and the 

strict positivity of the scale factors µ, wk ,wj and the probabilities, yields the following: 
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Let { }jjkk wmaxwmaxmax ;;µλ =  be the maximum dispersion parameters over the 
binomial and multinomial functions. We have: 
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Then for the ∞-norm we can write: 
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and for the 1-norm: 
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By strictly bounding the above two norm bounds we get the theorem conditions and the 
proof.  
 


