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ABSTRACT

The development of transport demand modelling can be described as a search of flexible models adapting to a greater number of practical situations. However, this search has been characterised by a flexibility-estimability trade off. In one hand, there are the traditional models of the Logit family that offer closed choice probabilities, but with restrictive assumptions that not always are properly justified. On the other hand, the Probit model allows to work with an error structure general in principle, but its estimation is quite complex and subject to identification restrictions. In this context, in addition by technological advances in term of computer's power and numerical methods, the use of simplified models has been questioned and it has appeared with force a new alternative of modelling: the Mixed Logit model.

In this paper we study both theoretically and empirically the antecedents that sustain the formulation of Mixed Logit model. Through an analysis of the covariance matrix we discuss how these models are able to model conditions in which independence and homoscedasticity are violated. This analysis is complemented with two numerical applications that allow to verify the real possibility of using this model and its capacity to adapt to practical situations. In the simulation experiments data bases are constructed so that it allows to objectively control the goodness of fit of the model, the reproduction of the calibration sample and the level of answer to changes in the attributes of the alternatives. The application with real data tries to validate the empirical study and to verify the feasibility to apply sophisticated econometric tools. Although its estimation requires simulation, it is observed that in general the model gives to a suitable reproduction of parameters and a good adjustment to the changes of policy. 

We conclude that Mixed Logit models constitute an interesting and powerful alternative for discrete choice modelling. Nevertheless, as in the case of any flexible model, it is necessary to be rigorous in the construction and implementation of a particular specification, justifying suitably the any assumption done and knowing clearly its consequences previous to the estimation of the parameters. 
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1.    introducTion

The so-called "Mixed Logit" Models have irrupted strongly in the theoretical environment of transport demand modelling in the last years (Ben Akiva and Bolduc, 1996; Brownstone and Train, 1999). It is a modelling alternative that could be located between the Logit and the Probit model. Its promoters claim it has the flexibility of Probit, keeping part of the simplicity of Logit. In this work we analyse its formulation in detail, with an optic of impartiality, verifying the consequence of its hypothesis. 

In the context of discrete choice modelling, the most common approach is based on random utility theory (McFadden, 1974). According to this theory, each individual n has a utility function Uin associated to each of the alternatives i, choosing the one which maximises his (her) utility. This individual function can be divided into a systematic component Vin, which considers the effect of the explanatory variables (measurable or observable by the modeller attributes), and a random component in that takes into account all the effects not included in the systematic component of the utility function; for example, the incapacity of the modeller to observe all the variables that have an  influence in the decision, measurement errors, differences between individuals, incorrect perceptions of attributes and the randomness inherent to human nature. Depending on the assumptions made for the distribution of the random error term, different models can be derived (Ortúzar and Willumsen, 1994).

Now, the models used the most are Multinomial Logit (McFadden, 1974), which is derived assuming that the error terms in are iid Gumbel and the Nested Logit (Williams, 1977), that is derived as an extension of the last, where it is considered the existence of an additional error component, which represents correlation in a group of alternatives. In synthesis, these models have very simple structures of covariance (of the error term), which is a simplifying assumption that not always is sustainable, but it allows to obtain models easy to understand and use.

The Probit model (Daganzo, 1979), on the other side, is derived assuming multivariate Normal distributed random errors, allowing in theory any error structure (covariance matrix) that the data permit to estimate, which imply a considerable level of estimation difficulty. This model, that appears so desirable from that point of view, has been timidly incorporated to practice, even though there are from some time ago powerful tools that yield its estimation by simulation (see Munizaga and Ortúzar, 1997). 

It is in this context that in the last years appear Mixed Logit models (also known as Error Component models or Logit Kernel Probit), as an intermediate alternative that is somewhere between Logit and Probit. The main idea of this kind of models is to consider more than one random component; in this way, apart from the iid Gumbel component, keeping the basic model as a Logit, other components are added, allowing to model correlation and/or heteroscedasticity. This lets to gain generality, but the estimation is not any more as simple as in the Logit case, and as in the Probit case, simulation is required. 

It has already been said that the distribution of the random disturbance plays a fundamental role in discrete choice modelling, and that most common models suppose a homoscedastic and independent Gumbel distribution. So, if the point is to incorporate models that allow more general error structures, it is important to analyse which structures would be desirable to be able to estimate and why. We are talking about the possible existence of correlation and heteroscedasticity (different variance) in the error term. In both cases, they can be between alternatives and between observations. The case of correlation between alternatives (present for example when the user perceive some alternatives as more similar between them than others) is assimilated under certain restrictions by the Nested Logit model, yielding a block diagonal and homoscedastic covariance matrix (see Munizaga and Ortúzar, 1999 a; b). However, many cases of correlation and heteroscedasticity, easy to associate to practical situations, can not be treated properly with the traditional models (Munizaga et al, 1997). So, it seems interesting to find a more general model which adapts to more sophisticated situations.

2.    THE Mixed Logit Model

2.1 Formulation

The idea of Mixed Logit models is not new, models of these characteristics have been proposed several years ago. For example, we can quote the works of Cardell and Dunbar (1980), and Boyd and Melman (1980), where a model equivalent to the current Mixed Logit is described with the name of Hedonic model. Its recent re-apparition with another name and renewed force can be due to technological advances in computing and numerical methods allowing now its estimation in less time. Recently this kind of models have been used to model diverse situations (Train, 1999; Brownstone and Train, 1999; Algers et al., 1998).

Mixed Logit models assume a utility function Uin conformed by a deterministic component Vin, a random component in independent and identically distributed, and one or more additional random terms. These additional error terms can be grouped together in an additive term 
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, that can be function of the data (attributes of alternatives), and that potentially models the presence of correlation and heteroscedasticity. So, the utility function is defined as:
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where in ~ Gumbel(0,) and in ~ f(*), with f a general density function and * are fixed parameters that describe it (eg mean and variance)
. As 
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 is iid Gumbel, then the probability conditional in 
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 of individual n choosing alternative i corresponds exactly to the Multinomial Logit model:
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So, the probability of choosing the alternative corresponds to the integral of the conditional probability over all the possible values of 
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, which depends on the parameters characterising the distribution, this is: 
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As a particular case, it can be assumed a utility function with the following specification
:
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In this expression the assumption is that the deterministic component of the utility is linear in the  parameters that multiply the attributes xin. Furthermore, it is assumed that  depends of certain parameters (in) and data observed related to alternative i (zin), relation which is also supposed lineal in the parameters. An additional assumption is that the 
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 term is a property of the individual, with no variation over alternatives. The latter means: 
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This specification is the one that has been used in the mayor part of the previous studies (Ben Akiva and Bolduc, 1996; Brownstone and Train, 1999).

Covariance Matrix 

Given a utility function like (4) and considering also the usual assumption (5), let 
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 for each alternative belonging to the choice set of the individual (
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a random vector iid Gumbel with covariance matrix 
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 variance, and that the vector has a joint covariance matrix 
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, then the covariance matrix of the model (
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), can be written as:
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It is clear that the matrix is positive definite and that its dimension is well defined
 and from this general expression it can be concluded that the model is capable to model correlation and heteroscedasticity between alternatives. In effect, if we obtain the covariance between two alternatives, for 
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which in general will be different from zero if for at least one k, 
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. In that case, there will be presence of correlation between alternatives i and j.

For the variance,
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Then if 
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it will be heteroscedasticity between those alternatives. 

We can see that this is a different form to justify a particular model. The usual form is to make assumptions directly over the covariance matrix of the error term 
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, like for example in the case of Probit. While in a Mixed Logit model an error structure is built adding terms that are source of correlation and/or heteroscedasticity.

Properties of the Mixed Logit

Probably the more interesting property of this model is that under certain regularity conditions any random utility model has choice probabilities that can be approximated as close as wished by a Mixed Logit (McFadden and Train, 2001). As a matter of fact,  a Mixed Logit model with Normal random distributed parameters can approximate a Probit model. 

Furthermore the Mixed Logit model, allowing the presence of correlation between alternatives, is capable to release the assumption of independence of irrelevant alternatives, characteristic of the Multinomial Logit model. In other words, the substitution patterns between alternatives are flexible. In effect, given a Mixed Logit probability (9), it can be shown that the ratio between probabilities of two alternatives depends on all the set of available alternatives. 
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Estimation

The choice probability of a Mixed Logit model, like the presented in equation (3), does not have a mathematical closed expression as in the Multinomial or Nested Logit. Even more, the integral can not be solved analytically and simulation must be used. Nevertheless, the fact that the conditional probability (2) has a Multinomial Logit form can be exploited. 

Then, if R values of 
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 are obtained from its density function 
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with r=1, ..., R. Accordingly to this, it is possible to obtain an average probability 
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and with it to build the simulated likelihood function
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Under regularity conditions, the simulated maximum likelihood estimator is consistent and asymptotically Normal. Even though (12) is an unbiased estimator of the probability, its natural logarithm results to be biased (Brownstone and Train, 1999); nevertheless, when the number of repetitions increases faster than the square root of the number of observations, the estimator is asymptotically equivalent to the maximum likelihood estimator (Hajivassilou and Ruud, 1994). 

3.    Mixed Logit compared to Nested Logit

A subject that has been matter of confusion is that a particular Mixed Logit specification could be equivalent to a Nested Logit model. This last model was conceived to deal with correlation between alternatives, grouping similar alternatives into nests within which the iid assumption does hold (Williams, 1977). The aggregation into nests implies a particular structure of the covariance matrix, because if two or more alternatives are grouped in a nest, the corresponding off diagonal elements will be different from zero. 

Brownstone and Train (1999) present a Mixed Logit model that they call “analogue” to a Nested Logit. This particular model is built grouping the alternatives into nests; then, in the utility function a dummy variable is added for each nest indicating if the alternative belongs or not to it. A common random parameter is associated to each one of these variables. In this way the model has a correlation structure such that in the alternatives belonging to the same nest an off diagonal term appears. The authors conclude that in that way the pattern of correlation is equal to that of the Nested Logit. Nevertheless, the correct thing to do is to compare the covariance matrix in both models. 

For example, let us suppose a case where three alternatives are available for a particular individual. These alternatives are car, bus and metro (underground). Let us also suppose that bus and metro are correlated, because of being perceived as more similar between them than car. This case, that corresponds to a Nested Logit with a public transport nest could be modelled as a Mixed Logit with the following specification according to Brownstone and Train (1999):
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where 
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 is a random term with zero mean and variance 
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 is an iid Gumbel term with variance 
[image: image41.wmf]2

e

s

. It is easy to see that the covariance matrix of this model is:
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This matrix has off diagonal terms indicating correlation between bus and metro alternatives; however, it is heteroscedastic. So this model is not really equivalent to the Nested Logit in terms of error structure, because the latter is homoscedastic by definition. 

The correlation between bus and metro alternatives is given by:
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Then, 

· If 
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From the shown cases, it is clear that larger the deviation of 
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 compared to that of the iid Gumbel error, larger will be the correlation obtained. This is a reasonable result, because 
[image: image51.wmf]m

 is the common term that imposes the presence of correlation between alternatives bus and metro.

The covariance matrix shows terms outside the diagonal indicating correlation between the alternative bus and metro. However, it is heteroscedastic. Therefore, this model is not in fact equivalent to the Nested Logit in terms of the error structure, since the latter is homoscedastic by definition. It is necessary to notice that this situation can be overcome adding an additional error component in the not nested alternative, that is to say:
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where 1, 2 are iid N(0,). 

Accordingly to this:
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However, this additional term is difficult to justify and it doesn't have a direct theoretical interpretation.  Also, the problem has not been overcome in fact. Indeed, let us suppose the presence of a new alternative, for example car companion - and let us think, then that car refers to car driver -. In practical terms one can argue car driver and car companion are considered as similar alternatives for the individual. This situation can be modelled by a Nested Logit:
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(19)
where auto-ch, auto-ac are iid Gumbel(0,1) – with variances 21 – and bus, metro are iid Gumbel(0,2) – with variance 22 –. 1 y 2 distributes according to the suppositions of Nested Logit
, with equal variances a 2y 2, respectively. Scale parameters 1 y 2 must be chosen so that 221 = 222 = 2/6, that is the joint variance associated to an error term in iid Gumbel(0,). That yields the following covariance structure:
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If we define 1=1 y 2=2, then:
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It can be seen that the matrix is homoscedastic, that is possible to identify two nests and that the correlation within each nest does not have to be the same among different nests. 

If we model the same situation with a Mixed Logit structure, then
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(22)
where1 ~ N(0,2), 2 ~ N(0,2) and in is iid Gumbel(0,) with variance 2. The covariance matrix associated to this model is:
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This matrix would be of a heteroscedastic nature, unless we assume 2 = 2 = 2.  Nonetheless, under this additional supposition, the correlation within each nest must be the same. That is, we will consider an equivalent matrix with the one of NL, only if 1=2. Therefore, in the described Mixed Logit structure there is a clear trade off between correlation and heteroscedasticity that it is not observed in the Nested Logit. Again, it is possible to consider additional independent error terms, seeking a homoscedastic matrix. However, the structure obtained is even more complicated and less intuitive than the previous example. By the way, it can be demonstrated that if we consider the matrix presented in (), only one parameter can be estimated. If we differentiate the model, the covariance matrix is so that only the sum 
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can be identified. This complicate the analysis of a Nested Mixed Logit with two nests.
4.    Mixed Logit compared to Probit

As mentioned before, the Mixed Logit model is built assuming additional error terms that may imply a heteroscedastic and correlated covariance matrix. On the other side, in the case of Probit only one error term is assumed with a general covariance matrix. In effect, a multinomial Probit model is derived assuming that given a utility function 
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 covariance matrix.

The Probit model does not have a closed expression of the choice probability either, so it becomes necessary to use some kind of approximation or simulation. The more used estimation method is the simulated maximum likelihood with the Geweke-Hajivassilou-Keane (Börsch-Supan and Hajivassilou, 1993) simulator, which recursively reduce the dimension of the integral up to an equivalent problem where repetitions of a truncated unidimensional normal are required. The simulated probabilities of this form are unbiased, continuous and differentiable. The simulation for the Probit and Mixed Logit models have different dimension: J-1 for the case of Probit
 and K for case of Mixed Logit. In this way, if K<J-1 there is an advantage over Probit because the simulation has a smaller dimension. This will happen when the number of random parameters incorporated to the Mixed Logit model is smaller than the number of alternatives.

5.    Simulation Analysis

5.1 Experimental Design 

Following the methodology of Williams and Ortúzar (1982), it was carried out a simulated experiment with the purpose of checking the real feasibility of application of the model. We elaborate different synthetic databases considering means and deviations of the attributes from a real database for Santiago de Chile. It was considered a situation of modal choice with four alternatives (car, bus, metro and taxi) and four explanatory variables (travel cost, travel time, access time,  income dummy).

Table 1: Taste Parameters

Car
Metro
Taxi
Travel Cost
Travel Time
Access Time
Income Dummy

-0.40
0.20
-0.45
-0.005
-0.08
-0.16
1.2

It is sought to model the case where the alternative bus and metro are considered similar. To build the stochastic part of the utility function we worked with the Nested Mixed Logit described above and outlined by Brownstone and Train (1999). It was considered an error term iid Gumbel(0,l) and, additionally, an error term n distributed Normal(0,2) with the purpose of modelling correlation. In the first place it was only considered this last one in the alternative bus and metro, obtaining a heteroscedastic covariance matrix. Also we considered iid Normal errors  for the non nested alternatives seeking to obtain a homoscedastic matrix corresponding to a structure theoretically modelable with a NL. If we assume that n ~ N(0,2), then it is possible to say that n = snwith sn standard Normal distributed. As is unknown, then we shall estimate its value, with which its distribution is completely described. Notice that as there is a Gumbel error term, the estimate parameter will be scaled so that 
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For the estimation of the Multinomial and Nested Logit Models, as well as Probit, we used a self-made code programmed in Gauss (Aptech Systems, 1994) based on the maximum likelihood routine. For the estimation of Mixed Logit we used a flexible code programmed in Gauss by Kenneth Train, available in his web page
.The Mixed Logit estimations where made with 200 repetitions using numbers based on Halton sequences (Train, 1999; Bhat, 2000). For the Probit case, we considered 10 repetitions of the GHK simulator. The reported values correspond to runs in a personal computer with a 450 MHz Pentium II processor and 64 MB RAM. 

In Table 2 the policy changes considered for the response analysis of the models are reported (Williams and Ortúzar, 1982); it may be seen that the defined policies correspond to strong changes in the attribute values, increasing up to double or diminishing to a half some values on each case.

Table 2: Policy changes


Travel Cost
Travel Time
Access Time


Auto
Bus
Metro
Taxi
Auto
Bus
Metro
Taxi
Auto
Bus
Metro
Taxi

P1
2.0












P2


2.0





1.5




P3

2.0



0.5







P4

0.5
1.5


2.0
0.3






P5








1.5


2.0

P6
2.0

0.5

0.5
1.5



2.0



The Chi squared index (Gunn and Bates, 1982)  is as a measure of error for each  policy change; it is calculated as
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 is the number of individuals that choose alternative i according to the prediction made by the model, and 
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 is the number of individuals choosing alternative  i according to the simulation model.

5.2 Influence of the number of repetitions

As we described Mixed Logit and Probit both require simulation for their estimate. This motivates a convergence analysis, in the sense of observing the behaviour of the estimates considering variable the number of repetitions for the simulation. To make operative this comparison in a context of correlated alternatives, it was considered a database composed by 4,000 individuals and 4 alternatives, where two of those (specifically the alternatives 2 and 3) present a correlation coefficient equal to 0.5. The database was built assuming a Nested Mixed Logit, with a homoscedastic covariance matrix. The number of repetitions considered for the simulation took the following values: 5, 10, 25, 50, 100, 200, 250, 500, 750, 1000. 

Fundamental aspects for the comparison are: time for convergence, loglikelihood, number of iterations. It is also interesting to observe what happens to the level of reproduction of the parameters with those the sample was created. Note that the dimension of integration of both Probit and Mixed Logit are the same and equals three (The number of alternatives - 1 for  Probit; 3 additional error components for Mixed Logit: one shared that induces correlation and two independent to achieve homoscedasticity with the other alternatives). To be able to compare the predictive power of the models, it is considered a strong change in the value of certain attributes. Then it is possible to calculate the predicted market shares by each one of the models and to compare them with the observed (modelled) shares. To define the attribute changes we considered P4 from the policy plan defined. For the case of Mixed Logit we considered both, estimation with pseudorandom numbers (MLR) and based on Halton sequences (MLH).

The results for Probit are reported in Table 3, varying the number of repetitions for the GHK simulator. In general terms, the parameters stay stable even for a low number of repetitions.

Table 3: Probit, 4000 Observations with correlated alternatives.  = 0.5 

Target
5
10
25
50
100
200
250
500
750
1000

Car
-0.40
-0.2148

(-2.674)
-0.2747

(-3.298)
-0.3017

(-3.823)
-0.3292

(-3.753)
-0.3179

(-3.597)
-0.3260

(-3.746)
-0.3287

(-3.720)
-0.3279

(-3.656)
-0.3273

(-3.886)
-0.3287

(-3.753)

Metro
0.20
0.2370

(3.965)
0.2263

(3.662)
0.2533

(3.880)
0.2560

(3.889)
0.2542

(3.913)
0.2539

(3.900)
0.2541

(3.878)
0.2544

(3.874)
0.2530

(3.885)
0.2554

(3.894)

Taxi
-0.45
-0.2292

(-3.193)
-0.2637

(-3.621)
-0.2943

(-4.525)
-0.3247

(-4.250)
-0.3097

(-4.042)
-0.3203

(-4.214)
-0.3229

(-4.242)
-0.3227

(-4.183)
-0.3204

(-4.358)
-0.3234

(-4.286)

TCOST
-0.005
-0.0033

(-5.006)
-0.0033

(-4.888)
-0.0036

(-4.955)
-0.0037

(-4.894)
-0.0037

(-4.946)
-0.0037

(-4.912)
-0.0037

(-4.964)
-0.0038

(-4.991)
-0.0037

(-4.970)
-0.0038

(-4.989)

TTIME
-0.08
-0.0584

(-14.960)
-0.0616

(-15.487)
-0.0638

(-18.368)
-0.0655

(-16.022)
-0.0647

(-15.942)
-0.0652

(-16.312)
-0.0656

(-16.323)
-0.0656

(-16.122)
-0.0654

(-16.874)
-0.0656

(-16.582)

ATIME
-0.16
-0.1230

(-15.027)
-0.1283

(-15.848)
-0.1357

(-18.709)
-0.1395

(-16.927)
-0.1376

(-16.313)
-0.1388

(-16.748)
-0.1394

(-17.028)
-0.1395

(-16.796)
-0.1391

(-17.460)
-0.1397

(-17.334)

Income Dummy
1.2
0.9480

(10.063)
1.0156

(10.422)
1.0721

(11.662)
1.1193

(10.671)
1.1000

(10.469)
1.1126

(10.472)
1.1165

(10.704)
1.1176

(10.578)
1.1140

(10.964)
1.1183

(10.839)


0.9069
0.5263

(3.564)
0.6254

(4.749)
0.7382

(7.246)
0.8053

(6.854)
0.7746

(6.292)
0.7920

(6.580)
0.8024

(6.864)
0.8030

(6.767)
0.7947

(6.967)
0.8049

(7.010)

Nº Iter.

10
7
6
6
6
6
6
6
6
6

Loglik.

-1.05450
-1.04922
-1.04560
-1.04472
-1.04586
-1.04604
-1.04533
-1.04516
-1.04525
-1.04519

Time for convrg.

25.06983
15.48433
23.95383
41.51167
72.73317
130.4957
136.2673
325.0023
438.8447
684.3543

The model presents certain difficulty to reproduce the parameter associated to correlation; however, it detects its presence for a considerably low number of repetitions, demonstrating the power of the Probit model. 

The results for Mixed Logit are shown in Tables 4 and 5, considering simulation with Pseudo Monte Carlo method (MLR) and Quasi Monte Carlo (MLH), respectively.

With a low number of repetitions correlation is practically not detected. As a matter of fact, for very low values of the repetitions, the parameters cannot be compared directly with the target values that appear in the respective tables. This is explained by the fact that we considered a total variance such that if it is considered only an error Gumbel iid to explain it, then the scale parameter equals one. However, under the assumption of Mixed Logit, the error term has been divided into a Normal distributed component plus the Gumbel error term. Thus, the Gumbel term for the Mixed Logit explains a smaller portion of the total variance and, therefore, its scale parameter greater than one.

Table 4: MLR, 4000 Observations with correlated alternatives.  = 0.5


Target
5
10
25
50
100
200
250
500
750
1000

Car
-0.5657
-0.2448

(-2.668)
-0.2456

(-2.676)
-0.2503

(-2.685)
-0.3769

(-2.833)
-0.4420

(-3.571)
-0.5063

(-3.908)
-0.5166

(-3.952)
-0.5235

(-3.975)
-0.5241

(-3.971)
-0.5231

(-3.969)

Metro
0.2828
0.3857

(4.574)
0.3856

(4.572)
0.3853

(4.556)
0.3769

(4.261)
0.3783

(4.011)
0.3808

(3.885)
0.3830

(3.888)
0.3843

(3.882)
0.3856

(3.885)
0.3845

(3.874)

Taxi
-0.6
-0.1777

(-2.510)
-0.1785

(-2.520)
-0.1826

(-2.528)
-0.2640

(-2.662)
-0.3904

(-3.696)
-0.4697

(-4.239)
-0.4823

(-4.297)
-0.4931

(-4.348)
-0.4978

(-4.370)
-0.4959

(-4.364)

TCOST
-0.0071
-0.0041

(-5.268)
-0.0041

(-5.262)
-0.0041

(-5.242)
-0.0044

(-4.918)
-0.0050

(-4.918)
-0.0054

(-4.936)
-0.0054

(-4.914)
-0.0055

(-4.936)
-0.0056

(-4.952)
-0.0056

(-4.954)

TTIME
-0.1131
-0.0820

(-22.066)
-0.0821

(-22.046)
-0.0824

(-21.373)
-0.0877

(-15.310)
-0.0955

(-16.367)
-0.1000

(-16.739)
-0.1005

(-16.752)
-0.1011

(-16.738)
-0.1014

(-16.718)
-0.1014

(-16.704)

ATIME
-0.2263
-0.1660

(-31.079)
-0.1661

(-31.041)
-0.1668

(-29.073)
-0.1787 

(-15.923)
-0.1978

(-17.160)
-0.2094

(-17.603)
-0.2108

(-17.574)
-0.2123

(-17.534)
-0.2132

(-17.502)
-0.2131

(-17.502)

Income Dummy
1.6971
1.2229

(14.685)
1.2229

(14.673)
1.2315

(14.276)
1.3408

(10.473)
1.5239

(10.812)
1.6381

(10.845)
1.6518

(10.833)
1.6672

(10.801)
1.6738

(10.779)
1.6746

(10.774)


1.2825
0.0185

(0.361)
0.0486

(0.610)
0.1379

(0.770)
0.5799

(0.2358)
0.9624

(5.501)
1.1639

(6.930)
1.1889

(7.056)
1.2124

(7.170)
1.2251

(7.228)
1.2235

(7.222)

Nº Iter.

5
5
12
13
6
3
3
3
3
3

Loglik.

-1.04785
-1.04783
-1.04780
-1.04770
-1.04650
-1.04507
-1.04492
-1.04488
-1.04483
-1.04485

Time for convrg.

0.43567
0.769
8.919
24.68983
24.6615
32.0005
32.23033
55.1425
94.5285
113.0605

Table 5: MLH, 4000 Observations with correlated alternatives.  = 0.5


Target
5
10
25
50
100
200
250
500
750
1000

Car
-0.5657
-0.2440

(-2.660)
-0.3010

(-2.879)
-0.4861

(-3.855)
-0.5220

(-3.973)
-0.5337

(-4.017)
-0.5321

(-4.028)
-0.5351

(-4.033)
-0.5375

(-4.048)
-0.5375

(-4.047)
-0.5375

(-4.047)

Metro
0.2828
0.3868

(4.587)
0.3798

(4.362)
0.3788

(3.903)
0.3887

(3.926)
0.3882

(3.883)
0.3877

(3.884)
0.3880

(3.878)
0.3885

(3.880)
0.3884

(3.877)
0.3885

(3.879)

Taxi
-0.6
-0.1777

(-2.510)
-0.2335

(-2.767)
-0.4516

(-4.231)
-0.4929

(-4.341)
-0.5122

(-4.455)
-0.5083

(-4.492)
-0.5130

(-4.495)
-0.5138

(-4.512)
-0.5154

(-4.519)
-0.5155

(-4.520)

TCOST
-0.0071
-0.0041

(-5.277)
-0.0043

(-5.105)
-0.0054

(-5.047)
-0.0055

(-4.902)
-0.0057

(-4.948)
-0.0056

(-4.968)
-0.0057

(-4.966)
-0.0057

(-4.961)
-0.0057

(-4.962)
-0.0057

(-4.962)

TTIME
-0.1131
-0.0820

(-22.055)
-0.0858

(-18.147)
-0.0991

(-17.130)
-0.1009

(-16.735)
-0.1022

(-16.786)
-0.1021

(-16.951)
-0.1023

(-16.895)
-0.1023

(-16.932)
-0.1024

(-16.921)
-0.1024

(-16.921)

ATIME
-0.2263
-0.1661

(-31.010)
-0.1745

(-20.783)
-0.2067

(-18.510)
-0.2124

(-17.389)
-0.2154

(-17.573)
-0.2150

(-17.881)
-0.2156

(-17.782)
-0.2158

(-17.820)
-0.2160

(-17.818)
-0.2161

(-17.818)

Income Dummy
1.6971
1.2226

(14.678)
1.2971

(12.409)
1.6039

(11.310)
1.6567

(10.772)
1.6975

(10.792)
1.6892

(10.905)
1.6964

(10.866)
1.6985

(10.877)
1.7003

(10.876)
1.7002

(10.877)


1.2825
0.0299

(0.268)
0.4666

(2.552)
1.1105

(7.186)
1.2121

(7.072)
1.2632

(7.433)
1.2514

(7.625)
1.2621

(7.609)
1.2651

(7.657)
1.2686

(7.676)
1.2683

(7.673)

Nº Iter.

6
14
3
3
3
3
3
3
3
3

Loglik.

-1.04786
-1.04735
-1.04485
-1.04495
-1.04449
-1.04437
-1.04444
-1.04434
-1.04434
-1.04434

Time for convrg.

0.5145
2.11733
1.04633
2.0185
14.45367
24.03817
28.67117
91.88383
141.4167
168.4447

The number of iterations stabilises in 6 for Probit, starting from 25 repetitions.  The Mixed Logit that considers Halton sequences (MLH) also stabilises from 25 repetitions, but this time in a value equals to 3. The same number of iterations is the one that we can observe for a Mixed Logit with random numbers (MLR), but now it stabilises in this number starting from 200 repetitions.

Graph 1: Number of iterations vs repetitions
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Time for convergence is notoriously bigger for Probit. In fact, only considering 5 repetitions, this takes approximately half an hour, in comparison to the less than a minute that is observed for MLH and MLR. Although times for Probit are high, they do not discard their use, except for a very high number of repetitions, case for which the time for convergence overcomes ten hours.

Graph 2: Convergence time vs repetitions
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For a reduced number of repetitions, the lowest times of convergence are associated to the MLH. However, as the number of repetitions increases the convergence of the MLH becomes slower in comparison to the MLR. A tentative explanation is that the storage of the Halton sequences occupies an important amount of the memory dedicated to carry out the calculations. 

For Probit a curious situation is observed. The highest value in the average log-likelihood is obtained for 50 repetitions (-1.04472), lowering for further repetitions and being stabilised in a relatively smaller value to the reached maximum (-1.04519 for 1000 repetitions).   

The MLH achieves loglikelihood values bigger than -1.045 for 25 repetitions, coming closer to -1.044 as these increase. On the other hand, the MLR reaches values bigger than -1.045 starting from 250 repetitions.
Graph 3: Average log-likelihood vs repetitions 
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In the response analysis, the Probit achieves values under 10 of the Chi squared index starting from 5 repetitions (see Table 6). A 10 value is considered the threshold for acceptable predictions, given the inherent randomness of the process. Even from 10 repetitions it achieves values under the critical value of the index (295%,3 = 7,815). Even more it is quickly stabilised in very low values, near 3.5. On the other hand, the MLH achieves values under the critical index starting from 25 repetitions, while MLR do it from 200 repetitions. By the way, the MLH is stabilised in an index 5,4 (100 repetitions) and the MLR makes it in 5,8 (500 repetitions).

Table 6: 2  index 4000 Observations, correlated alternatives .  = 0.5

5
10
25
50
100
200
250
500
750
1000

Probit
8.20
5.39
4.02
3.49
3.70
3.57
3.26
3.46
3.57
3.73

MLR
17.60
13.96
6.16
5.81
5.43
5.40
5.44
5.40
5.44
5.44

MLH
17.67
17.52
17.16
12.49
8.12
6.12
5.96
5.83
5.82
5.76

This situation is graphically represented in Graph 4. Note how Probit responses quite well to the considered policy. ML has an adequate behaviour but it requires more repetitions than Probit. Certainly both simulators are different but they are inspired in Monte Carlo methods. The GHK simulator reduces the dimension of the integral up to an equivalent problem and requires repetitions of a truncated unidimensional normal deviate. The simulation required for ML is based on random draws that permit to calculate a well behaved function (the Logit expression for the probability).

Graph 4: 2 index vs repetitions
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The Market Shares for P4 are shown in Table 7. All the models present only low differences between different number of repetitions for the simulation. Note that the 2 index reported above is calculated from the Market Shares presented in this table.

Table 7: Market Shares, 4000 Observations, correlated alternatives.  = 0.5
Modelo
Modos
5
10
25
50
100
200
250
500
750
1000

BASE
Auto
1548
1548
1548
1548
1548
1548
1548
1548
1548
1548


Bus
68
68
68
68
68
68
68
68
68
68


Metro
1761
1761
1761
1761
1761
1761
1761
1761
1761
1761


Taxi
623
623
623
623
623
623
623
623
623
623

Probit
Auto
1571
1557
1550
1540
1539
1543
1541
1538
1537
1538


Bus
90
86
84
83
84
83
83
83
83
84


Metro
1720
1734
1745
1750
1751
1750
1751
1754
1755
1755


Taxi
622
625
627
623
626
624
624
625
625
625

MLH
Auto
1527
1526
1525
1525
1526
1527
1525
1525
1526
1525


Bus
102
98
87
87
86
86
86
86
86
86


Metro
1755
1760
1774
1773
1772
1772
1773
1773
1773
1773


Taxi
616
616
614
615
615
615
615
615
615
615

MLR
Auto
1526
1526
1526
1524
1523
1525
1526
1525
1524
1525


Bus
102
102
102
97
91
88
87
87
87
87


Metro
1756
1756
1756
1765
1772
1772
1772
1773
1774
1773


Taxi
616
615
615
615
614
616
615
615
615
615

For the specific case of Probit skewed punctual parameters are obtained, in the sense that even increasing the number of repetitions, the parameters are stabilised in a value different from the real parameter. This is observed clearly in Graph 5, where the recovery of the parameter  can be appreciated.

Graph 5: Correlation parameter recovery. Probit Model 
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However, the confidence intervals appear appropriate (the real parameter is contained in the interval) starting from 50 repetitions. On the other hand, an excellent behaviour of the model is observed for a quite low number of repetitions (starting from 10 repetitions). It can be concluded for Probit that an excessively high number of repetitions is not required.

Graph 6: Correlation parameter recovery. MLR
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When considering a Mixed Logit with simulation based on pseudorandom numbers (MLR), the estimation of    is appropriate starting from 100 repetitions (see Graph 6). By the way, it should be noticed that although in general the confidence interval for this same parameter is adequate, it presents a strange behaviour for 50 repetitions, motivated by an increase in the t-values. For the response analysis, good results are obtained from 200 repetitions.

When using Halton sequences for the simulation of the Mixed Logit (MLH), it is observed that the parameter that induces correlation is unbiased, in the sense that when increasing the number of repetitions, it is stabilised in a quite near value to the real parameter (Graph 7). These results are observed starting from an inferior number of repetitions in comparison with the MLH (25 repetitions against 100 of the MLH). Also, the model responds appropriately to policy changes starting from 25 repetitions.
Graph 7: Correlation parameter recovery. MLH
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5.3 Detailed Analysis for correlated alternatives

A case with 8000 observations is presented considering a correlation coefficient equals to 0.5 between alternatives bus and metro
, where  (Munizaga and Alvarez, 2000). First we consider a heteroscedastic database, while the second database is homoscedastic. The total error variance was chosen so that the scale parameter when considering only an iid Gumbel disturbance equals 1, assuring an experiment not completely deterministic nor completely random. 

The  results for the estimation process of the Multinomial Logit (MNL), Nested Logit (NL), Probit and  Mixed Logit (ML) are shown in Table 8, where the reference values are also reported. The table shows the estimations of the parameters for each model, the t statistic of significance and the t test over the reference value of the parameter for the ML model. For the NL, the reference value of 
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 is calculated from the simulated correlation. 

The ML model allows to recover properly all the values of the taste parameters with which the database was generated, which is shown by the t statistic, that is less than 1.96 in all cases (see Table 8, () t-value against zero, [] t-value against target).

Table 8: Simulation Results

Heteroscedastic Database
 Homoscedastic Database


Target
MNL
NL
Probit

10 Rep
ML

200 Rep
Target
MNL
NL
Probit

10 Rep
ML

200 Rep

Car
-0.40
-0.3402

(-4.791)
-0.3872

(-5.469)
-0.2434

(-4.743)
-0.2946

(-5.168)

[1.848]
-0.40
-0.1489

(-2.143)
-0.2843

(-4.269)
-0.1921

(-3.2748)
-0.4619

(-7.982)

[-1.070]

Metro
0.20
0.3636

(5.848)
0.3171

(5.194)
0.2267

(5.322)
0.2512

(5.263)

[1.072]
0.20
0.4884

(7.982)
0.3605

(6.530)
0.2982

(6.768)
0.1731

(3.666)

[-0.569]

Taxi
-0.45
-0.7007

(-12.557)
-0.7698

(-13.065)
-0.4831

(-12.957)
-0.5218

(-12.116)

[1.815]
-0.45
-0.1166

(-2.274)
-0.3101

(-5.905)
-0.2043

(-4.159)
-0.4610

(-10.967)

[-0.261]

TCOST
-0.005
-0.0070

(-11.359)
-0.0070

(-11.279)
-0.0049

(-10.912)
-0.0055

(-11.011)

[-0.995]
-0.005
-0.0053

(-8.901)
-0.0052

(-8.453)
-0.0041

(-8.067)
-0.0049

(-9.721)

[0.232]

TTIME
-0.08
-0.1044

(-36.560)
-0.1005

(-32.035)
-0.0702

(-30.768)
-0.0804

(-31.172)

[-0.148]
-0.08
-0.0835

(-31.464)
-0.0760

(-27.932)
-0.0614

(-21.918)
-0.0791

(-30.845)

[0.344]

ATIME
-0.16
-0.2012

(-47.029)
-0.1954

(-41.264)
-0.1379

(-35.499)
-0.1563

(-36.078)

[0.860]
-0.16
-0.1765

(-44.919)
-0.1643

(-38.757)
-0.1323

(-23.712)
-0.1596

(-36.698)

[0.103]

Income Dummy
1.2
1.4928

(24.094)
1.4755

(23.953)
1.0686

(21.306)
1.1776

(21.464)

[-0.409]
1.2
1.2454

(21.117)
1.2174

(20.828)
0.9998

(15.243)
1.1866

(21.842)

[-0.247]


0.7071

0.8945

(23.953)


0.7071

0.7458

(22.558)




0.9069


0.5100

(4.597)
0.7601

(8.352)

[-1.613]
0.9069


0.5441

(5.880)
0.8472

(9.350)

[-0.658]

Iter.

5
5
6
3

5
5
7
2

l()

-0.93469
-0.93426
-0.93688
-0.93291

-1.03180
-1.02919
-1.03138
-1.02867

CPU Time [min]

0.6
0.8
35.5
42.5

0.7
0.8
35.2
152.5

It is worth noting that there is a relation between the parameters estimated with NL model and those of the ML. The ratio between both parameters in each database, is relatively constant, and is larger in the case of more correlation. This can be explained because the presence of heteroscedasticity affects the scale factor that multiplies the parameters. In the case of the ML model the common error component () is fixed to a certain value on each repetition of the simulation, so, the scale factor of the Gumbel distribution is corresponding to the  random term only 
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. While, in the case of the NL model, even dismissing the heteroscedasticity, it is the sum of both error components that is supposed to be Gumbel distributed, and in that case the scale is smaller; if all the alternatives had the same variance of the error term, then the scale factor of the NL would be 
[image: image76.wmf])

(

6

/

2

2

m

e

s

s

p

l

+

=

 (Munizaga and Alvarez, 2000). 

Table 9: Market Shares


Heteroscedastic Database
Homoscedastic Database


Alt.
Base
P1
P2
P3
P4
P5
P6
Base
P1
P2
P3
P4
P5
P6

BASE
1
3225
2482
2556
2754
2961
2837
3818
3244
2542
2596
2837
2973
2919
3665


2
1056
1146
1190
2262
157
1341
157
918
1090
1113
2050
162
1290
158


3
2625
3017
2862
2103
3858
3327
2897
2498
2843
2729
1975
3626
3171
2799


4
1094
1355
1392
881
1024
495
1128
1340
1525
1562
1138
1239
620
1378

MNL
1
3227
2445
2495
2675
2941
2713
3806
3244
2512
2548
2820
3014
2836
3703


2
1055
1232
1266
2281
193
1393
162
918
1065
1093
1869
193
1239
159


3
2624
3034
2908
2166
3882
3398
2865
2498
2867
2758
2165
3557
3289
2717


4
1094
1289
1331
878
983
496
1166
1340
1556
1601
1145
1236
636
1421

NL
1
3217
2438
2500
2681
2927
2717
3743
3242
2510
2577
2847
3005
2859
3588


2
1058
1234
1269
2317
182
1391
157
919
1066
1097
1929
168
1228
145


3
2628
3037
2901
2116
3907
3391
2931
2499
2869
2735
2066
3594
3262
2843


4
1096
1291
1329
887
984
502
1169
1340
1556
1591
1159
1232
650
1425

PROBIT
1
3238
2466
2513
2725
3000
2791
3752
3263
2545
2589
2860
3068
2895
3643


2
1067
1239
1275
2305
175
1405
150
932
1082
1115
1938
165
1270
139


3
2610
2984
2859
2103
3830
3324
2928
2478
2826
2709
2080
3528
3227
2784


4
1090
1318
1361
875
997
486
1170
1332
1553
1594
1129
1240
614
1435

ML
1
3224
2439
2491
2715
2945
2780
3746
3245
2504
2579
2861
3013
2884
3570


2
1057
1221
1257
2297
180
1369
158
920
1065
1095
1927
167
1227
145


3
2625
3008
2877
2092
3889
3345
2948
2498
2864
2724
2059
3591
3255
2854


4
1094
1332
1375
896
986
506
1148
1338
1568
1602
1153
1228
633
1431

The biggest differences between the predictions of the models and the simulated ones (virtual reality) are obtained especially for the MNL in the heteroscedastic database. The predictions of the NL and ML are quite similar and practically indistinguishable, for the homoscedastic case, being  both very similar to the virtual reality. However, if the database is heteroscedastic we observed some small differences among the predictions of both models.

Table 10: 2  Index

Heteroscedastic Database
Homoscedastic Database


MNL
NL
Probit
ML
MNL
NL
Probit
ML

Base
0.00 
0.03
0.40
0.00
0.00
0.00
0.53
0.01

P1
10.21
10.62
9.00
6.01
1.78
1.79
0.67
2.52

P2
9.65
9.81
7.50
5.65
2.52
0.91
0.81
1.42

P3
4.32
3.41
1.16
1.41
34.34
11.79
11.88
11.37

P4
10.35
6.64
3.41
8.03
11.63
5.44
13.46
5.41

P5
8.99
8.24
3.96
5.16
9.23
8.25
1.54
6.01

P6
1.87
3.40
3.33
2.64
4.15
5.01
4.91
6.64

6.    REAL DATA

As a way to validate the simulation analysis, an empirical study of a real database for the Las Condes - CBD corridor was carried out (Ortúzar and Donoso. 1983). Theis database was chosen for its quality as well as for the fact that it has been broadly studied. The sample consists in 697 observations and 9 alternatives. We worked with the following level of service variables: TT (travel time). WALKT (walking time). WAITT (waiting time). C/w (cost divided by salary rate). The correlation structures supposed are presented in Figure 1 and 2. We estimate MNL,  Independent Probit, NL, homoscedastic Probit and two Nested Mixed Logit specifications. The first one (HeNML), a heteroscedastic Nested Mixed Logit that considers only one additional term inside the nest; while the second one (HoNML) is a homoscedastic model that considers also independent error terms in the non nested alternatives. The correlation coefficient within each nest can be obtain for the NL through the structural parameter , while for the Probit it corresponds to a parameter to be estimated. In the case of ML, it can be demonstrated that: 
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The results are reported in Tables 11 and 12. It is possible to verify that the parameters do not possess remarkable variations among models. However, it is possible to observe important differences in the correlation estimated by the different models. 

Table 11: Nested estructure 1


MNL
Ind Probit 
NL
Probit
HeNML
HoNML

TT
-0.0823

(-4.743)
-0.0554

(-4.031)
-0.0907

(-4.002)
-0.0550

(-1.774)
-0.0951

(-4.936)
-0.0909

(-4.783)

WALKT
-0.1610

(-8.625)
-0.1077

(-8.662)
-0.1531

(-7.019)
-0.1067

(-7.702)
-0.1904

(-7.488)
-0.1807

(-7.007)

WAITT
-0.2359

(-2.238)
-0.1475

(-2.028)
-0.2170

(-1.966)
-0.1484

(-0.800)
-0.2741

(-2.498)
-0.2641

(-2.426)

C/w
-0.0244

(-3.647)
-0.0143

(-2.028)
-0.0228

(-2.854)
-0.0142

(-1.979)
-0.0253

(-3.318)
-0.0267

(-3.424)

SEX
-0.2951

(-1.361)
-0.1531

(-1.169)
-0.2627

(-1.269)
-0.1479

(-1.049)
-0.2830

(-1.273)
-0.2923

(-1.305)

LICENCE
2.3606

(5.786)
1.4889

(5.902)
2.2018

(4.842)
1.4736

(1.730)
2.5321

(5.690)
2.5308

(5.496)




0.9181

(6.575)









1.6061

(3.026)
0.8974

(2.191)




0.1571
0.0730

(0.299)
0.6106
0.3287

Iterations
6
9
5
27
6
8

Log likelihood
-1.36456
-1.37835
-1.36439
-1.37828
-1.35857
-1.35989

While with the NL and Probit very low correlation is obtained, the HeNML obtains a considerably high value. This value practically reduces to a half when a homoscedastic structure is imposed. Two possible explanations can be enunciated for this strange result. On one hand it can be postulated that the database is in fact heteroscedastic and correlated. So when imposing homoscedasticity the correlation is underestimated. On the other hand it can be that the number of observations of the sample is not sufficiently high as to be able to recover in a correct way the covariance structure.

Table 12: Nested estructure 2


NL
Probit
HoNML
HeNML

TT
-0.0886

(-4.562)
-0.0581

(-4.533)
-0.0955

(-4.990)
-0.0962

(-5.010)

WALKT
-0.1292

(-6.486)
-0.0978

(-7.240)
-0.1809

(-8.081)
-0.1813

(-8.082)

WAITT
-0.1981

(-2.308)
-0.1464

(-2.378)
-0.3142

(-2.730)
-0.3149

(-2.731)

C/w
-0.0228

(-2.801)
-0.0141

(-2.786)
-0.0224

(-3.143)
-0.0226

(-1.167)

SEX
-0.2356

(-1.378)
-0.1366

(-1.164)
-0.2667

(-1.173)
-0.2660

(-1.167)

LICENCE
2.2306

(5.292)
1.5845

(5.468)
2.7949

(5.497)
2.7959

(5.476)


0.9369

(6.888)





0.6309

(6.012)







1.0358

(3.805)
1.4847

(3.781)





0.0219

(0.006)


0.1222
0.0333

(0.132)
0.3948
0.5727


0.6020
0.4840

(2.688)
0.3948
0.0003

Iterations
6
32
8
9

Log likelihood
-1.35909
-1.37494
-1.35698
-1.35671

The results presented in Table 12 are quite strange, specially the one obtained for HeNML. Nonetheless, this structure has related identification issues, as discussed above. 

7.    Conclusions

From our point of view the ML model is an interesting, very flexible and useful modelling alternative, permitting to model and estimate correlation and heteroscedasticity with a personal computer in a moderate time. In this context it can become a real competitor to Probit, usually considered as the only or principal way to make more flexible the modelling of discrete choices. Nevertheless it is quite important to know its properties and limitations and to justify properly any specific structure over the basis of theoretical considerations prior to the estimation of the parameters.

The covariance matrix associated to ML depends on the specification given to the additional error terms that and it can be as general as desired subject to identification restrictions. In this sense, it offers a more flexible structure that other models, in particular it has the capacity of recognising correlated alternatives and taste variations expressed through random parameters. 

In this work two numeric applications are presented, one based on simulation experiments (including a convergence analysis) and another one with real data, both in a context of similar alternatives, implying a nesting error structure. 

It is shown both  empirically and theoretically that the Nested Mixed Logit is not equivalent to Nested Logit at least considering its covariance structure. However, for the reported correlation level, if the ML is not adjusted to obtain a homoscedastic covariance matrix, then the predicted market shares for both do not present severe differences. So we understand that these models could approximate a situation like the one presented here. We concluded that the nested structure for the Mixed Logit in theoretical terms always commits homoscedasticity when defining correlation. This could be seen as a problem if you want to compare it with Nested Logit, or as an advantage for the gain in flexibility. 
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APPENDIX

Let i be an alternative belonging to nest k. Let us consider the utility of this alternative, using a Nested ML structure: Uin = Vin + kn + in, where in ~ Gumbel(0,) and kn ~ f(0,2). It is easy to see that Var(Uin) = 2 + 2  and that Cov(Uin,Ujn) = 2  iif  j ( k. This kind of covariance structure implies the following correlation level:
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If kn ~ N(0,2), then kn = sknwith skn a standard Normal deviate and the estimated parameter shall be so that 
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. Let us consider (A.1) and the relation between the scale parameter and the variance of the Gumbel distribution, then it is direct to demonstrate (24).
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Figure 1: Nested structure 1
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Figure 2: Nested structure 2
























� In practical terms, the distribution of the random terms is usually assumed Normal, existing a variety of justifications behind this assumption. Another distribution that has been used is the log-normal, specially in those cases where sign restrictions (for a specific parameter) are necessary. 

�  is a vector of parameters of dimension L (there are explanatory variables L in the deterministic component of the utility function); xin is a vector of attributes of dimension L; in is a random vector of dimension K which components have zero mean and covariance matrix ; zin is a vector of attributes associated with alternative  i and individual n, and has dimension K; finally, in is a random variable that represents the stochastic error.

� The covariance matrix is of dimension � INCRUSTAR Equation.3  ���. In effect, as � INCRUSTAR Equation.3  ��� is of dimension � INCRUSTAR Equation.3  ��� (with K the number can of random components), and � INCRUSTAR Equation.3  ��� has dimension � INCRUSTAR Equation.3  ���, then � INCRUSTAR Equation.3  ��� is a matrix of dimension � INCRUSTAR Equation.3  ���; Then adding this last to � INCRUSTAR Equation.3  ���, which is of dimension � INCRUSTAR Equation.3  ���, finally� INCRUSTAR Equation.3  ���.

� A distribution so that kn + maxi in ~ Gumbel (0,)

� Because it’s based on the differences � INCRUSTAR Equation.3  ���, with i the chosen alternative and j each of the rest J-1 alternatives.

� http://elsa.berkeley.edu/~train/software.html

� We also considered higher correlation coefficients, but we prefer to report this particular experiment, because practical correlation is not substantially high.
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