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           _______________________________________________________

The transport user equilibrium problem with inelastic demand has been solved by the direct application of Wardrop's equilibrium conditions to alternative routes between origins and destination zones (centroids) in the network, subject to satisfy network constraints; this characterizes a global equilibrium strategy. In this paper the network is decomposed into elementary networks to which Wardrop's conditions are applied by switching flows. Since link flows are stored by trip origin, several strategies to select origins to switch flows can be applied. Selecting one strategy, the local approach iteratively solves elementary user's equilibrium problems converging eventually to a global equilibrium for cyclic networks. This approach has the theoretical advantage of interpreting the global equilibrium problem as composed by an aggregate of local network equilibrium, secondly, it identifies trip origins on each link flow and, thirdly, it generates a completely new set of solution algorithms. Preliminary tests show that the proposed algorithm is highly efficient when compared with traditional methods.

         _______________________________________________________   

1. Introduction

The notion of traffic equilibrium in transport networks was defined in Wardrop (1952) seminal paper. Equilibrium is attained for each origin-destination pair (OD) if the users' (perceived) travel costs in used paths are equal to each other and no greater than unused paths. The mathematical non-linear problem of finding equilibrium flows is called the transport users' equilibrium problem (TUE). 

Some simplifying assumptions are normally taken as to generate solving algorithms for TUE with limited complexity, reduced consumption of computing resources and assuring convergence. They are: flows are assumed as continuous variables; link travel costs are increasing functions dependent on the link flow level and independent on other links flows. Trips demand by OD is assumed to be elastic and depending on trips costs at equilibrium, although the special case of inelastic demand is useful to illustrate the mechanism embedded in solution algorithms. 

A family of solving approaches has been derived from Beckmann et. al. (1956) non-linear programming formulation of the TUE. Several authors have contributed with solving techniques both for the primal and dual formulations (see Fukushima 1984). There are two common elements in this family of algorithms. First, they face the global solution: i.e. equilibrium is conceived at the trip's origin-destination level, with the interaction between OD pairs imposed through network constraints. Second, they solve the assignment problem in terms of total link flows. Recently, however, Bar-Gera (1999) proposed an algorithm for cyclical networks where the solution is a cyclical sub-network and is represented by origin-based link flows aggregated over all destinations. 

The local approach presented in this paper departs from the global approach. Here, we decompose the network into a set of elementary components called regions. They are pairs of routes between intermediate nodes that connect one node called origin with another one called destination, including the limiting case where one of these routes does not exists, called a circuit. Then, we find the optimal flow shift between the region's paths defined by the wardropian local equilibrium for each region. It is well know as Wardrop's principles, that equilibrium may be obtained either with non-zero flows in both routes (strong equilibrium) or with one route empty (weak equilibrium). The aim of our approach is to iterate this process region by region until a global optima is found. Intuitively, while the classical or global approach proceeds by equilibrating all route costs for each OD, the local approach simply equilibrates regions. However, this approach requires solving three main problems: the interdependency between regions, the potential low efficiency due the exponential number of regions and the interaction between different origin flows. 

Interdependency occurs because links are shared between regions, making their local equilibrium solutions to be dependent to each other. We shall prove that each local equilibration step improves Beckmann et. al.'s objective function, then if an algorithm equilibrates each region this solves the interdependency issue. Thus, in our approach Beckmann at. al.'s objective function decreases with each step, however, this fact solely does not warrants that this process converges to global optima for any real network. We shall propose an algorithm called M2(1), which generates a sequence that converges to the global optimum. 

Efficiency, in the case of the global approach, depends exponentially on the network size and the number of OD pairs; that is also the case for M2(1) which we improve significantly in the algorithm M2(2). In this enhanced version, for any network (including those with cycles), we find a reduced set of regions with a size proportional to the network size, called network base, to which M2(1) is applied. The simplicity to find equilibrium in each region plus the low size of the base, increase the efficiency of M2(2). Although this method is sufficient in some cases it is not correct in a more general case where the global Wardrop equilibrium solution contains empty routes, simply because weak equilibria is not preserved for the aggregation of regions, however, strong equilibrium is preserved over regions aggregation. Therefore, a correct though approximated method, called M2(), is proposed by modifying the link cost functions slightly using a barrier methods, which avoid weak equilibria keeping the sequence generated by the algorithm inside the domain of strictly positive flows. We shall prove that the difference between Beckmann et. al.'s functions at the original optimal solution and our approximated solution is bounded by an -parameter controlled by the modeler. 

Interaction between origins is solved simultaneously with the shifting flows procedure, by selecting the strategy of shifting flows from specific origins unless the origin flow is zero. This criteria assumes that individual vehicles are homogeneous except for their origin. Other alternative criteria may also be implemented, producing the same Wardrop equilibrium but a different pattern of path flows per origin. 

Although the local approach uses old ideas, such as shifting flows, it also introduces some new methods. For example: the local approach, which is based on decomposing the network into regions; the notion of optimizing over a reduced set of regions that defines the network base; and the application of the barrier method to solve specific -but also common- real network configurations. The method has a first merit on decomposing the network into its basic units, a second one on producing differentiated link flows by origin while optimising over all origins simultaneously, and a third one on being efficient and correct although approximated. 

In the following section, the local framework is described, followed in the third section by the presentation of the set of algorithms leading to the global equilibrium. Then, in Section 4 we test the performance of M2() algorithms with two networks, Leblanc et. al.'s (1975) and a sub-network of the transportation network of Puerto Montt a city in the South of Chile.

2. The local approach

Network notation

Let us denote by 

N : the set of nodes, with n nodes,

U : the set of links, with m elements,
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 : non-negative continuous increasing cost functions of links,


[image: image2.wmf]U

a

a

K

Î

)

(

 : links capacity,


[image: image3.wmf]N

O

Í

 : the set of r origins, 


[image: image4.wmf]N

D

Í

 : the set of destinations, 

T = (tij) : the trips demand matrix, where (tij) = 0 if 
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The TUE optimization problem

Consider Beckmann et. al.'s (1956) transformation of Wardrop's transport user's equilibrium conditions into the following equivalent minimization problem: 
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and X : non-negative link flows 
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 satisfying demand (tij).

Here feasible link flows are defined as vector differentiating the contribution of each origin to the total link flow, so 
[image: image13.wmf])

,...,

,

(

:

2

1

r

x

x

x

x

X

x

=

Î

 where each 
[image: image14.wmf]O

i

x

i

Î

,

, is a non-negative vector of size m with element xia satisfying for any 
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or equivalently
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 that is, dij is the net flow coming from origin i leaving the network at vertex j (when j=i, the flow entering the network at origin i is -dij). 
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Figure 1: Notation of flows associated to origin i at node l.

We interpret F as the energy function of the TUE problem. Note that F is an additive function on cost integrals, so the contribution of each link to minimize energy is straightforward. This motivates our local approach based on modifying a feasible solution in a group of links so as we keep feasibility and reduce the function F. The natural local structure in a transport network is a pair of routes with the same origin and the same destination which we call a region.

Definition 2.1 A region R=(R+,R-) is a cycle composed by two paths R+ and R- with a common origin and the common destination. We denote by R the set of all regions in the transport network.

In the network illustrated in Figure 2 we have the region R composed by paths R+=(1,2,6,13) and R-=(4,11,15,16) with origin A and destination K. The representative vector of a region R is the vector h
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The representative vector of the region R composed by paths R+= (1,2,6,13) and R-= (4,11,15,16) in the network illustrated in Figure 2 belongs to {-1,0,1}17 and is given by

hR = (1,1,0,-1,0,1,0,0,0,0,-1,0,1,0,-1,-1,0)

The node-link incident matrix A associated to the network of Figure 2 is given by 
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where columns are associated to links and rows are associated to nodes. The column associated to a link (i,j) has a 1 in row i and a -1 in row j. It is a known result (see Papadimitriou 1998) that for any region R its representative vector hR satisfies AhR=0, that is the vector hR belongs to the kernel of the matrix A.

Shift flow method

We will now show that shifting flows within regions allow us to reduce F keeping feasibility. In terms of Wardrop's equilibrium a feasible point 
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 is optimum for the TUE problem if for every pair of origin o and destination k and for any pair of routes R+ and R- connecting o and k, the costs on these routes are either equal or they are different only if the more expensive one carries no flow or the cheapest one has attained its capacity. Conversely, if a feasible solution x is not an optimum there exist an origin o and a destination k and two routes R+ and R- between them with different costs, the most expensive one having a positive flow and the cheapest carrying a flow below capacity. A strategy to improve the equilibrium on these two routes is to shift flow from the expensive to the cheapest one so as the difference in the costs is reduced. 

Assume for the next discussion that the cost on R- is lower than on R+, that is 
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In order to shift flow from R+ and R- and preserve feasibility we need to choose an origin 
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The flow shift improves the local equilibrium on the region formed by R+ and R-, however nothing can be said yet about the global improvement. In order to analyze the global effect of the flow shift we use the gradient of F at x, given by 
[image: image41.wmf]o

a

o

a

c

x

F

=

Ñ

))

(

(

. Then



[image: image42.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

=

×

Ñ

å

å

-

+

Î

Î

R

a

a

a

R

a

a

a

x

c

x

c

o

R

h

x

F

)

(

)

(

)

,

(

)

(


(2)

Our previous analysis can be summarized as follows. If x is not a Wardrop equilibrium then there exist R=(R+,R-) and 
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is obtained from x by moving along -h(R,o). From inequality (1) and equality (2) we know that -h(R,o) is a descent direction for F at x. The well known result in basic calculus that it is possible to move along direction -h(R,o) so as the value of F decreases, in the case of transportation networks this property means that by shifting flow from R+ to R- the function F decreases. In Theorem 2.2 we show that as long as 
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by shifting 
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 units of flow from R+ to R- the function F decreases. 

Theorem 2.2 Let R=(R+,R-)  be a region composed by two routes R+ to R-, x a feasible point and 
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and the variation in function F is 
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A crucial point is that this difference depends only on costs of links in the region R=(R+,R-). In order to analyze the behavior of 
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Using the mean value theorem and 
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In words this proves that as long as some flow is shifted without inverting the original cost relationship, then there is a net gain in the global function F. This defines a strict relationship between local change towards equilibrium and the global improvement in F.

Summarizing, we have defined a procedure based on shifting flows in a region, keeping the feasibility condition, improving the region's equilibrium and simultaneously improving the global objective function F. 

3. From local to global equilibrium

The iterative application of the shift procedure to all pair of routes (R+,R-) and all origins generates an algorithm that improves the objective function at each step. The algorithm stops when there is no pair of routes where the feasible solution 
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 can be modified, i.e. costs are equilibrated in Wardrop's sense for all pair of routes (R+,R-)  and all origins, then 
[image: image81.wmf]x

ˆ

 is the global equilibrium. 

Definition 3.1. A region R is said to be 

(1) Strongly equilibrated on flow x if 
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(2) Weakly equilibrated on flow x if 
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(3) Dis-equilibrated on flow x if neither 1 or 2 holds.

In terms of regions and according to the above definitions, we have that a feasible solution 
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 is a Wardrop equilibrium if and only if there is no region which is dis-equilibrated, that is the set of dis-equilibrated regions, hereafter denoted as DR(R,x) is empty. 

Define      
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if DR(R,x)
[image: image91.wmf]¹

( and 
[image: image92.wmf]q

(R,x)=0 otherwise, hence 
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(R,x) is the maximum value of the projection of the gradient of F at x over directions associated to regions. Then 
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 is a Wardrop equilibrium if and only if 
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Algorithm 3.2. The "crude" Algorithm M2(1)

(1) Find any feasible solution x
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X.

(2). While DR(R,x)
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( do 

(a) Take a region R
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DR(R,x) and o
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(R,x).

(b) Compute 
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(c) Set the new value of x to 
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(3) Stop.

This algorithm produces a sequence of feasible solutions (xn). The solution xn+1 is obtained from xn by shifting flow in a region which is dis-equilibrated. The process eventually stops if all regions are equilibrated, but it may never stop.

Theorem 3.3. If algorithm M2(1) stops with a solution 
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, then it is an optimal solution for the TUE problem.
Proof: First remind that the algorithm produces feasible solutions at every step. Each step finds a wardropian equilibrium for the analyzed region, although in doing so it may modify the equilibrium conditions of other regions with shared links. However, the algorithm stops when all regions are equilibrated simultaneously, particularly those regions involving OD centroids. Since the optimal solutions of problem TUE are exactly the Wardrop's equilibria for the network we deduce that 
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 is a minimum of the objective function F.
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So far we have proved that if the algorithm stops it finds the global solution. Now we consider the case when the algorithm does not stop. 

Theorem 3.4 Under compactness assumptions and the Lipschitz condition on 
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 we have that if the Algorithm M2(1) does not stop then it generates a sequence of feasible solutions whose accumulation points are Wardrop's equilibrium.

Proof: If we assume that the algorithm does not stop, an infinite sequence of feasible solutions (xk) is generated which improve the objective function. Under the compactness assumption (xk) has a subsequence that converges to 
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. We need to prove 
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 is a Wardrop equilibrium. 

Under the Lipschitz assumption, we can prove that for n large enough F(xn+1)-F(xn)
[image: image111.wmf]2

))

ˆ

,

(

(

x

c

R

q

£

with c>0. If 
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 is not a Wardrop equilibrium there exists a dis-equilibrated region R on flow 
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. Then 
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 and the sequence F(xn) is unbounded, which is impossible since the function F is non-negative. 
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Nevertheless, this algorithm is not efficient since the size of the set R grows very fast with the network's size, that is, it has to consider too many regions on a real network. Then, we need to increase efficiency by finding a compact representation of regions.

The base of regions

So far the elements of the set H={h(R,o) :R a region and o
[image: image115.wmf]Î

O},have been used as descent directions for the function F; the main problem of our first algorithm is that the size of H could be extremely large, exponentially proportional to the network size. 

Consider the regions R, S and T in Figure 2 given by 

hR = (1, 0, 0,-1,-1, 0, 0, 0, 0, 0,-1,-1, 0, 0,-1, 0, 0)

hS = (1, 1, 1,-1, 0, 0,-1, 0, 0, 0,-1, 0, 0,-1,-1,-1,-1)

hT = (0,-1,-1, 0,-1, 0, 1, 0, 0, 0, 0,-1, 0, 1, 0, 1, 1)

that is 

R+ = (1)

R- = (4,11,15,12,5)

S+ = (1,2,3)

S- = (4,11,15,16,17,14,7)

T+ = (16,17,14,7)

T- = (12,5,2,3)

If we subtract vector hS from vector hR we obtain vector hT. In words, the region T can be obtained as a linear combination of regions R and S. Moreover, it is not hard to prove that if regions R and S are strongly equilibrated so is T. Therefore in our previous algorithm it is not necessary to consider all regions in R. We show that it is possible to consider a subset B of H with a size only proportional to the network size while aiming at converging to the global equilibrium. 

Consider 
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 H and denote 
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=(h1, . . . ,hr)t. Remind from the definition of h(R,o) that the for all 
[image: image119.wmf]0

,

r

=

¹

i

h

o

i

 and that ho=hR, where hR is the representative vector of the region R. Let A be the node-ink incidence matrix of the network and let 
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 INCRUSTAR Equation.3  [image: image130.wmf]h

ˆ

)o=AhR. It is possible to prove that AhR= 
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 (see Papadimitriou and Steiglitz, 1998) therefore 
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 belongs to the kernel of matrix 
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Consider the linear subspace Y
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IRmr (where m is the number of links of the network and r is the number of origins) generated by H, that is the set Y is the set of all vectors obtained as a linear combinations of vectors in H. Since each element 
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 of H satisfies 
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=0 we conclude that Y=ker (
[image: image138.wmf]A

ˆ

).
It is known that the dimension of the kernel of the matrix A is (m-n+1), where n is the number of vertices of the network (see Papadimitriou and Steiglitz, 1998). Therefore the dimension of Y is p=r(m-n+1) and consequently Y has a base of size p, that is there exists a set B 
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Y of size p such that all vectors in Y can be written as a linear combination of the vectors in B. More important for our purpose is that B can be chosen as a subset of H. 

Using that base B instead of the set of all regions R, we get the following algorithms. 

Algorithm 3.5. The "efficient but incorrect" Algorithm M2(2)

(1) For any 
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, compute a feasible vector xi such that Axi=di.

(2) Define x=(x1, . . . ,xr).

(3) While DR(R,x)
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( do

(a) Take an element R
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(b) Equilibrate R. 

(c) Update the value of x.

(4) Stop.

This algorithm has two main features: 

Efficiency: It exploits the structure of the network to reduce the space of directions to a finite set of size p. Then the classical search for descent directions, which needs to be done at each flow x, here is reduced to a finite number which does not depend on flow x. 

Correctness: Admittedly, it may stop with some regions weakly equilibrated, in this case global equilibrium can not be assured. Recall that a weak equilibrium occurs in a region R when 
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and for all origins there is a link a in R+ with xia=0 or there is a link a in R- with xa=Ka. It is worth noting that the zero flow condition in a link a depends on the choice of the regions in B, then by changing the base B we could repair the M2(2) algorithm. The problem with this strategy is that given the size of the set of bases we lose efficiency. 

The domain X has a short description in terms of matrix 
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: x
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X if and only if 
[image: image149.wmf]A

ˆ

x=
[image: image150.wmf]d

ˆ

, where 
[image: image151.wmf]d

ˆ

=(d1, . . . ,dr)t, and x is no negative. Furthermore we have the following optimality condition: x
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X is optimal if and only if for every 
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 in the kernel of 
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 the projection of the gradient along h is zero. Since B is a base of the kernel of 
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 we have the following theorem. 

Theorem 3.6. If x is a positive (all its coordinates are positive) feasible solution and all the regions in base B are strongly equilibrated on x, then x is an optimal solution.
Proof: Our assumption says that 
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 for all regions h(R,o) in B. Since x belongs to the relative interior of X with respect to the kernel of 
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and B is a base for the kernel of 
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The strategy to get a correct algorithm is, obviously, to avoid weak equilibrium in regions and produce feasible solutions in the interior of the domain. For that purpose we apply a barrier method, which consists on modifying slightly link cost functions by adding a term that keeps the feasible solution in the interior of the domain and such that every equilibrating process on regions produce a strong equilibrium. 

Let take  >0 and 
[image: image162.wmf]IR

g

®

+¥

)

,

0

(

:

 a strictly convex function with 
[image: image163.wmf]-¥

=

+

®

)

(

'

lim

0

t

t

g

. Consider the modified problem P given by 


[image: image164.wmf])

(

)

(

)

(

Min

x

G

x

F

x

F

e

e

+

=


where 


[image: image165.wmf]å

å

å

Î

Î

Î

+

-

=

U

a

O

o

o

a

U

a

a

a

x

g

x

K

g

x

G

)

(

)

(

)

(


Under the hypothesis on function g the problem P has a unique solution since the function F  is strictly convex. We denote this solution by x().

To understand how this barrier method works remember that in M2(1) the shift flow procedure is applied to a region R=(R+,R-) and to an origin o
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O, transferring flow from R+ to R-so as

either: 

(1) the costs become equalized (R becomes strongly equilibrated),

(2) the flow in R+ associated to origin o becomes zero,

(3) the total flow in some link in R- reaches capacity. 

By using the modified link-origin cost function 
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we void the last two options, because the cost function 
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 goes to minus infinity when 
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 goes to zero and it goes to plus infinity when xa approaches capacity. 

Algorithm 3.7. The Third "Efficient and Correct but Approximated" Algorithm M2()

(1) Choose an accuracy level  >0.

(2) For any 
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 compute a positive vector xi such that Axi=di  (a feasible solution for origin i).

(3) Define x=(x1, . . . ,xr) (a global feasible solution).

(4) While DR(R,x)
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(a) Take an element R
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DR(B,x)  and an origin o
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(b) Equilibrate R with respect to o. 

(c) Update the value of x.

(5) Stop.

Theorem 3.8. If algorithm M2() does not stop it generates a sequence that converges to the optimum of F.

Proof: The proof is similar to those of Theorem 3.4. Due to the selection of h(R,o) we can assure that the sequence generated by the algorithm converges to a feasible point x in the relative interior of X and at that point 
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In order to assess the quality of the solution of P  we have to analyze the behavior of the optimal solution x() for P  when   goes to zero. 

Theorem 3.9. Let x()  be the optimal solution of the problem PThen any accumulation point of ((x())>0 is an optimal solution of the problem P. 

Proof: Let z be any positive (all its coordinates are positive) feasible solution of P. Since x( ) is the optimal solution of problem P and for every 
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We assume that there exists a constant K such that K
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G(x( )) for every  >0. For this assumption to hold it is enough that all links have a finite capacity. In this situation we have 
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Let 
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 be an accumulation point of (x()) >0. Given that F is a continuous function we obtain that 
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Taking the limit when 
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goes to zero in (4) we obtain 
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 is an optimal solution of the problem P. 
(
Summarizing the M2() algorithm exploits the natural structure of a transportation network which makes it efficient, avoids the weak equilibrium by perturbing the objective function pushing the solution to the interior of the domain and produces a sequence that converges to an approximated solution of the problem P as stated in Theorem 3.9.

4. Empirical Results

Implementation features

· In the implementation of algorithm M2() we have modified part 4a. Instead of choosing (and finding) a region and an origin such that 
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B,x) we equilibrated all regions in the base in a prescribed order. That is what we call an iteration. 

· The equilibrium for a region R is performed with respect to the origin o with the maximum dis-equilibrium in R. This is an optional criteria subject of further testing.

· To perform the flow shift we compute the minimum flow in origin o in the links of R+ and the minimum of the difference between the link capacity and link flow over links in R-. Taking the minimum of these two quantities we define the maximum shift flow 
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 such that by shifting 
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 units of flow from R+ to R- the region R becomes equilibrated. In this implementation we ignore capacity constraints.

· The stopping criteria is that the variation in the objective function F (the original one) should be smaller than 1%.

· We use the function g(x) =-log(x).

Data

We considered the Sioux-Falls transportation Network (Leblanc et al.1979) and a sub-network of the transportation network of Puerto Montt city in Chile. The relevant parameter of these examples are given in the following table:


Nodes
Links
Origins
Destinations
Base elements
Min trips Min{tij}
Max trips Max{tij}

Sioux-Falls
24
76
24
24
406
1
44

Puerto Montt
135
343
36
36
685
0.1
275.2

The cost function used in both cases is ca(xa)=Aa+Bax4a
Computing

To obtain information in the M2() algorithm’s dependency on the volume of flows we have amplified the OD flows in Puerto Montt network by factors 3, 7, 10 and 15. This gives us six examples that we call Sioux-Falls, PtoMontt, PtoMontt3, PtoMontt7, PtoMontt10 and PtoMontt15. All computation were carried out in a Sun Ultra Sparc-4, 400Mhz, 1GRAM, with Solaris operating system and the code was written in C. For each example we have done the following computations 

i) For  
[image: image193.wmf]Î

 { 0.01,0.05,0.10} we ran M2(), to test the effect of the accuracy parameter. In this case M2() runs for a fixed 
ii) For a sequence (n) going to zero we ran M2(), where at the nth iteration n, for n
[image: image194.wmf]³

1. Here we test the hypothesis that by running M2() with a decreasing value of  at each iteration the solution is improved.

iii) We applied the Saturn 8 software in order to have a reference solution. 

Sioux Falls
Iterations
CPU time (seg)
F(x(

= 0.01
5
4.7
895(103

( 0  
5
5.3
927(103

Saturn
10
-
923(103

Le Blanc et al

-
1210(103

Puerto Montt




= 0.01
2
4.2
2492(103

( 0  
3
5.7
2486(103

Saturn
3
-
2371(103

Puerto Montt 3




= 0.01
4
6.4
7657(103

( 0 
4
6.4
7584(103

Saturn
3
-
7317(103

Puerto Montt 7




= 0.01
5
7.0
2418(104

( 0 
6
7.6
2405(104

Saturn
3
-
2271(104

Puerto Montt10




= 0.01
7
7.8
6180(104

( 0
7
7.8
6207(104

Saturn
3
-
5500(104

Puerto Montt15




= 0.01
8
8.2
3114(105

( 0
9
8.5
3091(105

Saturn
3
-
2700(105

In the equilibrium solution for Puerto Montt's network there is one link which is extremely congested with respect to others, while in the equilibrium solution of Sioux-Fall's network there is more homogeneous congestion. This partially explains why in Sioux-Fall our model performs better than  Saturn, while in Puerto Montt the performance result is the opposite. According to these limited results one could say that in cases like Puerto Montt a global strategy may be better, because one need only to care about congested links, while in cases with more homogeneous congestion every link matters so local strategy seems to perform better.

Some complementary results are:

· Since the value of is rather small, we obtained no relevant difference between F(x( and F(x(
· In some cases, as Sioux Falls and Puerto Montt 7 and 15, the option of ( 0 does not provides the minimum F. This result highlights the fact that Theorem 3.8 only guaranties that M2( algorithm converges to the optimal solution for Pwhen is fixed; there is not, so far, an equivalent theorem for ( 0. In fact Theorem 3.9 applies for a sequence of solutions obtained as limit points of the M2(algorithm (with fixed and only guaranties that these solutions accumulate in a global solution for P.
5. FINAL REMARKS

This paper identifies a "natural structure for transport networks", called regions, which are a subset of the cycles used in the Graph Theory. They constitute the elementary unit of which complex transport networks are composed. In our view the mere decomposition of a complex object like transport networks is a first relevant theoretical contribution, although rather academic. 

A first application is the development of a novel algorithm to solve the classical transport user equilibrium problem (TUE). However, we do expect that further applications may be developed from future applied research. For example, zooming to local network analysis based on a more detailed municipal regions base. 

The second interesting contribution is the identification of a regions base, which has the following important characteristics: 

· It is independent to demand level, implying that once it is identified, it can be used to solve the TUE, or for other applications, with a variable demand. This feature becomes crucial in dynamic modeling, where demand is essentially variable along time.

· It is dependent on the network and on the set of origin and destination nodes. This makes the base specific for this, say supply, characteristic of the network. However, rebuilding the base for a limited number of changes induces a limited extra patching effort. 

The efficiency of the algorithms to solve the TUE problem lies on the fact that only uni-dimensional computations (shifting flows) are performed. Additionally, parallel computation may be naturally introduced using the network decomposition into regions.

We have proposed a family of algorithms characterized by the local approach which generates a large number of algorithms that need more detailed study, which is a matter of future research. For instance, we have implemented a specific shift flow method but others can be considered, as for example the step 4a in M2() may be modified by: the way the region is chosen, the set of origins selected to shift flow in each region and the criteria used to define the amount of flow used. Some of these optional algorithms may improve significantly in efficiency and accuracy.
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Figure 2: A transportation network with 17 links and 12 nodes 
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