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A new approach to bus stop modelling
Rodrigo Fernández, Department of Civil Engineering, University of Chile

In a previous paper Fernández (1999) discussed the importance of bus stops on bus operations and bus priorities. As a result, the issue of bus stop design was raised and some design recommendations were provided. Following this line of thinking this paper presents a microscopic simulation approach to study stop operations in detail. Firstly, a summary of the approaches to model stops operations is presented and the advantages and limitations of various models are discussed. As a result, the need for an alternative modelling perspective is established. From that background the paper moves towards the essential issues of a new model of bus stops. Some experiments with the model are shown. The modelling exercise stresses the sort of factors that have more influence on the operations at bus stops. The results show that a detailed modelling of bus stops and appropriate designs based on that modelling approach could improve the operation of the whole bus system. These conclusions are equally valid for any at-grade transit system; i.e., normal buses on the street, busways, guided buses, trams and LRT systems. This work is complementary with another in progress on simulation bus-traffic interactions around bus stops (Silva, 2000).
STOP CAPACITY MODELS
One of the main concerns about bus stops, when considered as isolated mechanisms, has been the estimation of their capacity to manage passenger transfer operations. From this, some performance indices can be derived for subsequent analysis and decisions, such as queues and delays at bus stops. 

In conceptual terms, any transfer station (port, airport, rail station, bus stop, taxi rank, etc) is the place where transport objects (passengers or freight) and transport modes (different types of vehicles) meet each other in order to allow the objects to be loaded onto, and unloaded from, the vehicles. For the purposes of this paper these objects are passengers and the vehicles are buses. The capacity of a transfer station can be defined in terms of (a) buses that can be served; or (b) passengers that can be transferred. From a traffic point of view the issue (a) will be the more relevant, for it implies buses passing the station and hence their passengers moving through the system. This can conceptually be expressed as:
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where:


C:
transfer capacity of the station


N:
number of loading positions or berths


(:
availability of the loading positions


to:
occupancy time of each loading position

If each loading position is assumed to be able to accept one bus at a time, then the transfer capacity is expressed in buses per unit of time; i.e., buses per hour (bus/h). 

The number of loading positions depends on the available space at the transfer station. Normally this is a scarce resource that should be minimised subject to both physical and operational concerns.

The availability of a loading position can be expressed as a proportion of the time that the loading position is free of buses. Availability depends on operational conditions, including the way in which the loading positions are allocated to vehicles; the entry and exit discipline to and from a loading position (e.g. FIFO); the possibility that a bus remains at a loading position after the completion of the transfer process; and external conditions such as the traffic control.

Occupancy time is a function of the types of buses and passengers. For instance, an articulated and high-floor bus could require more time to be accommodated and loaded than a smaller low-floor bus; passengers paying in cash to the driver will require more time to board than persons with passes; etc. Occupancy time will also depend on the interaction between buses and passengers. This interaction can be described by means of models that relate the occupancy time with the number and type of passengers being transferred.

The factors that affect the transfer capacity can therefore be classified as:

· Physical: number and layout of the loading positions and manoeuvring space, loading and unloading facilities, design of vehicles.

· Operational: arrival of buses and passengers, assignment and use of loading positions.

Behavioural: type of drivers and passengers.

In the case of bus stops all these factors are present. The solution to some of them is explained in Fernández and Tyler (1999) and Fernández (1999), where the issue of determining the number of berths (loading positions) for a given capacity was addressed. 

Three models of bus stop capacity are discussed below. They correspond to the few formal approaches found in the literature on this matter, for scarce attention has been devoted to bus stop operations.

THE HIGHWAY CAPACITY MANUAL MODEL
Since its earliest version the Highway Capacity Manual (HCM) has dedicated some paragraphs to the performance of on-street transit (see TRB, 1965). As a result, the present HCM model of bus stop capacity can be summarised as follows (TRB, 1985):
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where:


QN
: capacity of an on-street bus stop (bus/h)


g
: green plus amber time at a downstream traffic signal (sec)


c
: cycle time at the downstream traffic signal (sec)


tc
: clearance time between successive buses (sec)


tp
: passenger service time at the bus stop (sec)


R
: reductive factor for variations in service and arrival times 


Nb
: effective number of berths for N actual berths

If there is no a traffic signal close ahead, then (g/c) = 1.0.

The factor R reduces the capacity to account for variations in passenger service times at the bus stop. St Jacques and Levinson (1997) state that the expression tp + ZaStp should be enter into Equation 2 to account for those variations, where Za is the one-tail variate for the normal distribution associated with the probability a that a queue will not form behind the bus stop, and Stp is the standard deviation of the passenger service time. According to these authors, using values of Stp obtained in several cities in USA (ranging 0.4 to 0.5 times tp), the formula was calibrated for various service times and probabilities. Thus, the resulting values were rounded and the expression was simplified to Equation 2. Therefore, R approaches to 1.0 for regular headways, which in the HCM is thought to be the case of on-street rail systems with centralised traffic control. Otherwise, a value of R = 0.833 is suggested, which implies that about one-third of the time a queue of buses will develop upstream the bus stop.

The HCM offers different values of Nb for linear berths with no overtaking (‘on-line’) and overtaking (‘off-line’) facilities. These come from empirical observations at bus terminals in New York and New Jersey. It also states that all other berth arrangements, apart from linear, produce fully effective berths.

The HCM states that passenger service time tp can have different expressions according to the number and function of the doors: boarding only, one-way flow door; alighting only, one-way flow door; or two-way flow through door. These conditions can be summarised in the flowing equations:

· For one two-way door:
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For two one-way doors:
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where:


ba
: alighting time per passenger (sec/pass)


bb
: boarding time per passenger (sec/pass)


pa
: alighting passengers per bus in the 15-min peak 


pb
: boarding passengers per bus in the 15-min peak 

The HCM formula is plain and pragmatic. However, it rests on empirical evidence coming from limited case studies ( such as the values of R and Nb obtained at bus terminals ( to evaluate stop performance. Therefore, the approach is rather simple to take into account a wider range of operating conditions found at on-street bus stops. One approach to resolve this problem has been to use microscopic simulation models to revise the HCM predictions (see St Jacques and Levinson, 1997). 

CAPACITY UNDER CONVOY OPERATION
Convoy operation was studied in Brazil as a way of increase the capacity of a bus lane were many of the principal arterial street were totally saturated by large volumes of buses which often use more than one lane for overtaking manoeuvres. This presents the following questions: At what point it is advantageous to use exclusive bus lanes when the volume is very large? How many buses can reasonably be accommodated in only one lane?

Following Szász et al (1978), in a bus lane having no traffic signals one bus may pass a given point each 3.5 seconds, which means a 1,030-bus/h capacity. If there are traffic signals, the above capacity should be reduced by the ratio of the effective green to the cycle time of the downstream traffic signal. For instance, if the green time is equal to 50% the cycle time, a capacity of 515 bus/h can be obtained, which is higher than the normal flow of buses at almost any corridor. Therefore, if traffic signals were the only point where buses stop, one bus lane would be sufficient. However, the actual critical points of bus lanes are intermediate bus stops. For example, if 4 passengers board each bus at a rate of 3 sec/pass and each bus takes 12 sec entering, opening and closing doors, and leaving the bus stop, a maximum capacity equal to 150 bus/h can be achieved unless some action is taken. This was experimented in Brazil by using convoy operations at bus stops (EBTU, 1982).

Convoy operation consists on operating buses similarly to a train, but without being physically connected. Buses travel in a group with short headways between them and stop all together at the bus stop in the order in which they travel. Buses to specific destinations stop at determined berths so the passengers know where to wait on the platform. As a result, passenger transfers take place at the same time for all the stopping buses. As this is a parallel transference, the passenger service time for all buses is that of the maximum, instead of the sum as would be in the serial case. Under this form of operation, an empirical expression for the capacity of a bus stop is provided by Szász et al (1978). This formula comes from experiences carried out in São Paulo:
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where:


QC
: capacity of a bus stop under convoy operation (bus/h)


N
: average number of buses in the convoy (bus)


bb
: boarding time per passenger (sec/pass)


B
: boarding demand at the bus stop (pass/h)

Equation 5 can be understood as the capacity of a well-organised bus stop with N linearly adjacent berths. In this view, it is considered that buses arrive and depart according to FIFO discipline, and they occupy all the available berths. It is also assumed that the berth occupancy time is equal for each bus, the boarding demand is evenly distributed through each hour, and buses arriving with minimum headway between them. Hence, it rests on very special conditions to have general validity.

THE SIMULATION MODEL IRENE
To overcome the limitations of the above formulae, Gibson et al, (1989) develop an alternative approach based on microscopic simulation. This approach considers an isolated bus stop with N linear berths and FIFO discipline. Under these conditions, a bus can enter the stop area only if the last berth is free. The stop area can be in one of only two states:

· Unblocked: the last berth is empty, and a certain amount n (where n £ N) of buses can enter the stop area at rate s buses per unit of time. The duration of the unblocked period is then n/s.

Blocked: the last berth is occupied, so no buses can enter the stop area. The duration of the blocked period is assumed to be tb.

These two states are cyclical, where the duration of the cycle is equal to n/s + tb. During each cycle a number of buses n can use the bus stop. Then the maximum number of buses per hour that can enter the stop area ( i.e., the capacity ( is given by:
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where:


QB
: absolute bus stop capacity (bus/h)


n
: average number of buses that can enter the stop area (bus)


s
: saturation flow of the lane prior to the bus stop (bus/sec)


tb
: average duration of a blocked period in the last berth (sec)

The main concern of this approach is then to estimate tb and n. In a multiple-berth bus stop the blocked time tb has three components: a lost time tl for acceleration and deceleration manoeuvres, the passenger service time tp linked with passenger transfer operations, and an extra delay te. The lost time tl can be obtained from kinematic equations. The estimation of the passenger service time tp can be done with the same type of model of Equations 3 and 4 suggested by the HCM. The extra delay te arises when a bus has completed its transfer operations but cannot leave its berth because of restrictions imposed by other vehicles. This could be caused by the blocked time of the downstream berth in a multiple-berth bus stop with no overtaking facilities, or the time searching for a suitable gap in the adjacent lane if overtaking is possible. In the case of a one-berth bus stop it can be the time during which the exit of the bus stop is blocked by a downstream traffic signal or by queues of vehicles generated by that signal. Otherwise, if the exit from the berth is free of obstructions te is equal to zero.

Values of tb and n are dependent upon all factors influencing the use of existing berths. As a result, Gibson et al (1989) argue that this is a complex stochastic process as bus and passenger arrivals as well as the number of times that the bus stops at the bus stop are stochastic elements. Therefore, they developed a microscopic simulator to calculate QB. The result is the program IRENE (see Gibson, 1996).

The simulation program IRENE can be considered as one of the most advanced currently available tools for modelling bus stop operations because it is able to deal with various physical and operational conditions as well as different levels of demand. Nevertheless, this advance has shown some limitations. Among them, the most important are (Fernández, 2001): the constraint to built-in arrival patterns of buses and passengers; the limitation to allow short-term variations in the inputs; the impossibility of route differentiation; and the oversight of impacts on passengers.

A NEW MODEL OF STOP INTERACTIONS
As a result of the above criticism concerning the models presented in Section 2, the conclusion is that service differentiation, the possibility of managing any arrival pattern (e.g. actual bus schedules), and the consideration of impacts on passengers are features that might improve the representation of phenomena at bus stops. Thus, a richer representation of the interactions at bus stops can improve the assessment of the potential impacts on users and the way in which those impacts can be managed. This is intended with the approach presented below.
THE SYSTEM UNDER INVESTIGATION
A bus stop is comprised of a stop area with a certain number of berths and a platform of a given size. Stop areas and platforms can be arranged in various ways to cope with the combination of the bus flow and the demand of boarding and alighting passengers. If bus flow and passenger demands are low, a single-berth bus stop made up of a one-berth stop area, the adjacent platform, plus approach and exit areas could be enough to accommodate the stopping buses and the waiting passengers. However, as the demand increases, a multiple-berth bus stop would be required, comprising a stop area with two or more berths and a longer platform. When a multiple-berth bus stop cannot cope with the demand, a multiple bus stop will be required comprising two or more stop areas with one or more berths each and the corresponding platforms. Stop areas and berths can be accommodated in various layouts: linear, parallel, sawtooth, etc, according to operational rules and available space (Fernández and Tyler, 1999; Fernández, 1999). 

Split bus stops recommended by the British practice (LT, 1996) are examples of a multiple bus stop with two single-berth stop areas (Figure 1). Thus, multiple-berth bus stops and multiple bus stops are the aggregation of a simple block: a single-berth bus stop, as shown the dotted oval in Figure 1. In addition, it is the simplest layout and the most common in Britain and elsewhere, and all the complex bus stops described in the previous paragraph are made up of a set of these blocks. Therefore, the system to be investigated is an isolated one-berth bus stop. Once this system is understood, other, more complicated, layouts can also be analysed.
MODEL OVERVIEW
The model developed under this approach was called PASSION (PArallel Stop SimulatION). It should be noted that the expression ‘parallel’ in the name of the program does not mean any particular computing architecture, but the concurrent nature of the interactions that are modelled. Indeed, PASSION is a sequential program of concurrent interactions written in C++ built as a virtual laboratory to experiment with a simplified version of the system under study: a one-berth stop area, its adjacent platform, and its immediate traffic restraints. The aim of PASSION is to reproduce the behaviour of this system under different cases of bus and passenger arrivals, and exit conditions.

PASSION is able to provide information about the occupancy of the berth and the platform due to various causes. This can allow the analyst to obtain the capacity of the bus stop, delays to buses for different reasons (passengers, internal congestion, queues), and upstream queues. A more detailed description can be found in Fernández (2000). For the platform, it is possible to obtain the number of passengers waiting for different services and their waiting times. These outputs should enable the user to discover the influence of diverse external conditions on the performance of bus stops. Then, this knowledge can be used to derive operational rules to improve the bus stop efficiency.

In order to overcome some of the limitations of the previous models, PASSION is able to support any arrival pattern of buses and passengers and exit conditions. For example, regular or random bus headways, scheduled arrivals, several lines with different frequencies, as well as bus bunching. For the passengers, distinct patterns of arriving passengers could be generated. For instance, uniform arrivals, random arrivals, or following a certain order set by other activities (e.g. arrivals from other bus stops or stations). In addition, the exit from the stop area can be completely free or partially obstructed by traffic conditions. In the latter case, the exit can be controlled by a traffic signal or blocked during a certain time by other vehicles ahead or in the adjacent lane.
ANSWERS PROVIDED BY THE MODEL
Some of the questions that the model can answer with respect to bus stop performance are the following: Are there changes in performance indexes for different arrival patterns? Can traditional distributions adequately describe bus stop interactions? Is there any influence for obstructing exits from the berth? Is there any consequence for different and variable boarding times? Is there any effect for different and variable bus capacities? In summary, these questions are those which cannot be answered with the present models described in Section 2.

Examples of the type of answers provided by PASSION to the questions posed above are showed next. To this objective, some data collected at the Manor House Station bus stop in London are used: 22-bus/h stopping bus flow; 390-pass/h boarding demand; 67-pass/h alighting demand; 2.0-sec/pass boarding time; and.3-sec/pass alighting time.

Firstly, the effect of different arrival patterns is shown. This is done contrasting the actual sequence of bus and passenger arrivals with traditional distributions to describe bus stop interactions. In current descriptions of bus operations, arrivals at bus stops are represented as stochastic phenomena where the particular interval between pair of events is chosen from a distribution. Thus, the simulation model IRENE assume the Cowan's M3 shifted negative exponential distribution (Cowan, 1975) to describe the headway between buses. Similarly, Holroyd and Scraggs (1966) and Danas (1980), among others, state that passenger arrivals follow a Poisson distribution; therefore, the inter-arrivals should follow a negative exponential distribution (Pidd, 1998).

The contrast between the answers provided by PASSION for the actual, ideal, and exponential sequences of arrivals is summarised in Table 1. In that table, the mean and maximum values of the main performance indexes of the bus stop are shown. In the case of delay to buses, this is shown split into delay for boarding and alighting passengers and in queue waiting for the available berth. The total delay is the sum of these components of the delay, plus the clearance time of the berth (5 sec in this case). The maximum value in this case is referred to the total delay. In the case of capacity, the mean value obtained during the simulation and the degree of saturation of the bus stop are shown.

It can be seen from the table that the model is sensitive to the change in the arrival patterns, in particular in relation to the maximum values of the performance indexes. As can also be seen in the table, traditionally assumed distribution cannot always adequately describe the interactions at bus stops. As a result of the feature of the model of working with actual arrivals, PASSION can operate beyond the scope of previous models.

The next question that a model is able to answer is related to the influence of obstructing exits from the bus stop. To explore the ability of the model to answer that question the actual operation of the bus stop ( with no obstructions to leave the berth ( is compared with two hypothetical cases. These are: (a) the exit is controlled by traffic signal with 100-sec cycle time and effective green ratio equal to 0.4 (e.g., a bus stop sitting just upstream a traffic signal); and (b) the exit is controlled by gaps in the adjacent lane, which is produced by car flow of 1200 veh/h (e.g., a bus trying to pull-out from a bus bay).

The result of this comparison is shown in Table 2. The delay to buses is now split into delay for boarding and alighting passengers, in queue waiting for the available berth, and the extra delay for obstructing exists, which is zero in the actual case. According to the table, the model shows sensitivity to changes in the exit conditions, which affect the delay to buses with consequences over the capacity and queues at the bus stop. No effects on passengers were found. These results can only be explored partially with the existing tools (e.g., HCM formula, IRENE model).

Another issue to be tested is the consequence over the performance of the bus stop due to different boarding times. To explore the sensitivity of the model to this issue, the feature of PASSION that allows the user to specify a different boarding time for each passenger was used. Thus, in the actual case the observed average boarding time equal to 2.0 seconds is used, while for the comparison a variable marginal boarding time between 1.5 and 6.0 seconds randomly assigned to each passenger is tested. Other authors in UK studies (Cundill and Watts, 1973; York, 1993) have reported this range of boarding times.

The results are shown in Table 3. As shown in the table, the model responded as expected (see York, 1993); that is, if the average and variance in boarding time increases, the delay to buses at bus stops increases. Due to this, the capacity of the bus stop is reduced and the queue length increases. As in the previous case, no effects on passengers were found.

EXTENSIONS TO ROUTE PERFORMANCE
Our hypothesis is that while a more precise bus stop interaction picture is provided, a more acute representation of the progression of a bus along its route can be obtained, and vice versa. How might a better understanding of bus stop interactions improve a bus corridor model? It was argued in a previous paper (Fernández, 1999) that bus stops are the main bottlenecks for bus operations. As a result, a bus corridor model can be represented as shown in Figure 2. There, the delays ds at the nodes – bus stops – are a function of the capacity Qs of those nodes, which in turn is a function of the boarding and/or alighting number of passengers per bus (p). In addition, this boarding or alighting number p depends on both the passenger demands P for the bus system at each node and the bus flow qb on the network. So, p = P/qb
Therefore, an acute representation of the patterns of demand and flow and the consequences of their interactions at the nodes (ds) will improve the modelling of a network (or corridor) as that shown in Figure 2. The approach presented in this paper could supply the aforementioned representation of bus stop interactions. For instance, the possibility of using richer representations of the interaction between the passenger demand and bus flow at a node allows the construction of a detailed bus exit pattern from that node to be used as the bus arrival pattern to the following node. This pattern combined with the passenger pattern at the downstream node will produce the new bus exit pattern, and so on. Nonetheless, it is the scope of further research how to incorporate junction or link interactions into a comprehensive bus progression model. However, the work of Silva (2000) can supply this complement.

As an example of these extensions, an elemental representation of a bus corridor was developed in a spreadsheet. The system is made of upstream and downstream bus stops, a bus lane connecting the bus stops, and a traffic signal in between, as shown in Figure 2. Each bus stop was modelled with PASSION in the way suggested in the paragraph above. The bus lane and traffic signal, however, were modelled in a simpler way for this example. Thus, the movement through the bus lane is made at a specified uniform acceleration rate until buses reach a given constant speed. Similarly, buses stop at another specified uniform deceleration rate from that constant speed. A fixed-time traffic signal is assumed at the junction with some appropriate cycle time and green ratio.

As a way of illustration, the effect of different boarding times on a bus corridor was studied with such an extension of the model. This is shown in Table 4 for a bus corridor with 30 buses per hour, a boarding demand equal to 300 passengers per hour at the upstream bus stop and 150 at the downstream bus stop. The traffic signal has 60-sec cycle time and 0.8 effective green ratio for buses. Parameters for the simulation were taken form real data in a Santiago’s street. These are: acceleration and deceleration rates equal to 1.5 and 1.7 m/s2, respectively; cruise speed of buses equal to 45 km/h; distance from the upstream bus stop to the traffic signal is 235 m, and from the traffic signal to the downstream bus stop 74 m.

As shown in this example, there was a marked drop in commercial speed of buses as the boarding time increases. The distribution of the travel time also changes from a condition in which most of the time (55%) is spent in movement to another condition in which buses spent almost the 90% of the travel time stationary at bus stops (see Figure 3). In addition, the congestion at the bus stops – represented as capacities and queue lengths – worsens. All this, despite the advantageous signal timing for buses suggested in this example (short cycle time and high green ratio). These findings demonstrate the advantages of having a good representation of bus stop interactions in bus progression models and the contribution that PASSION can make to that objective.

CONCLUSIONS
There have been advances in modelling bus stop operations. Within them, the simulation program IRENE represents an important contribution for its ability to deal with many physical and operational designs to estimate bus stop performances. It is an advance from the static analytical models such as that provided by the HCM. This development is comparable with others made in the traffic-engineering field where flexible simulation models have replaced simple but restricted formulae to analyse complex dynamic phenomena.

In this article a new model to study bus stop interactions has been described. It was argued that, for the characteristics of the system under investigation (a one-berth bus stop), a fundamental model like this is enough to study the main interactions at bus stops. This suggests that, before to attempt the study of bus operations in corridors or the optimisation of bus services, it is necessary to have a better description of the microscopic short-term dynamic interactions at the bus stops.

In addition, it was demonstrated by means of simple experiments that this model is able to answer some relevant questions about the operations of bus stops. In particular, the effect of arrival patterns of buses and passengers, obstructions to pull out from the berth, and boarding times of passengers seem to be important factors for bus operations. These effects cannot be studied with the present models of bus stops or with macroscopic models of bus operations. Further improvements and simulation experiments are in progress with the model; the results will be reported in subsequent papers.

Finally, despite the fact that the paper is applied to buses, it is important to note that all the general results and conclusions are equally valid for any at-grade transit system; that is, normal buses operating on the street, busways, guided buses, trams and LRT systems.
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Figure 1 Example of a multiple bus stop (LT, 1996)
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Figure 2 Representation of a bus corridor model
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Figure 4 Effect of boarding times at bus stops on route performance

Table 1 Effect of different arrival patterns

Test
Actual Arrivals
Exponential Arrivals

Waiting

Time (min)
Mean

Maximum
1.63

6.12
3.45

16.65

Passengers

On Platform
Mean

Maximum
17.79

49.00
24.79

114.00

Bus

Delay (sec)
Passengers

Queuing

Total

Maximum
37.11

5.62

47.73

104.34
36.88

3.50

45.38

127.87

Bus Stop

Capacity (bus/h)
Mean

Saturation (%)
85.50

0.26
85.97

0.26

Queue

Length (bus)
Mean

Maximum
0.03

1.00
0.02

1.00

Table 2 Effect of obstructing exits

Test
Unobstructed Exit
Blocked by Signal
Blocked by Traffic

Bus

Delay (sec)
Passengers

Extra

Queuing

Total

Maximum
37.11

0.00

5.62

47.73

104.34
37.11

9.88

6.73

58.71

128.50
37.11

11.38

11.65

65.14

141.95

Bus Stop

Capacity (bus/h)
Mean

Saturation (%)
85.50

0.26
69.25

0.32
67.14

0.33

Queue

Length (bus)
Mean

Maximum
0.03

1.00
0.04

1.00
0.07

1.00

Table 3 Effect of different boarding times

Test
Actual Boarding Time (2 sec) 
Variable Boarding Times

Bus

Delay (sec)
Passengers

Queuing

Total

Maximum
37.11

5.62

47.73

104.34
66.37

24.85

96.22

197.37

Bus Stop

Capacity (bus/h)
Mean

Saturation (%)
85.50

0.26
50.44

0.43

Queue

Length (bus)
Mean

Maximum
0.03

1.00
0.19

2.00

Table 4 Simulation of a bus corridor with PASSION: effect of boarding times

Board Time

(s/pass)
Comm

Speed

(km/h)
Time spent at

(%)
Capacity

(bus/h)
Queue Length

(bus)



Up

Stop
Down Stop
Traffic Signal
On the 

Move
Up

Stop
Down Stop
Up

Stop
Down Stop

1.0
21
26.8
17.2
0.6
55.4
248
368
0.02
0.01

2.5
15
40.7
22.0
0.4
36.9
123
211
0.12
0.06

3.5
12
45.1
26.1
0.4
28.4
92
162
0.23
0.15

5.0
9
49.4
30.2
0.2
20.2
67
121
0.53
0.44

7.0
6
56.6
29.6
0.3
13.5
49
91
1.33
0.70
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 ds = ds [Qs(p)]
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