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Abstract

The problem of adaptive stabilization of a class of continuous-time and time-varying nonlinear

plants is treated in this paper. The control scheme guarantees that the state of the plant, with

bounded time-varying parameters, asymptotically converges to zero. For the nonlinear case with

n2+n unknown parameters (n time-varying and n2 constant), when the control matrix B is unknown

the controller has to adjust n2+1 parameters providing only local stability results. On the contrary,

when the control matrix B is known only one parameter has to be adjusted and the proposed scheme

provides global stability results. The general methodology is particularized for the linear case with

2n2 unknown parameters (n2 time-varying and n2 constant), adjusting n2+1 parameters when the

control matrix B is unknown and guarantees only local stability results, whereas in the case when the

control matrix B is known only one parameter has to be adjusted and the proposed scheme provides

global stability results.
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1. Introduction

The adaptive control of time-varying linear and nonlinear plants has received
considerable attention during the last two decades, particularly soon after the standard
MRAC was solved in 1980 for the linear ideal case [1,2]. Several approaches have been
proposed to face this problem making use of different techniques [3–8]. In this sense it is
interesting to mention the work by Xie and Evans [3] on discrete time adaptive control for
deterministic time-varying systems and the model reference adaptive control system
proposed by Ohkawa [4] for discrete linear time-varying systems with periodically varying
parameters and time-delay. Middleton and Goodwin [5] suggested a global adaptive
control scheme for time-varying linear systems, based on bounded-input bounded-state
stability without requiring persistent excitation. An indirect adaptive control scheme was
also proposed by Tsakalis and Ioannou [6], for time-varying plants whose parameter
variations are not necessarily slow. Marino and Tomei [7] presented an adaptive output
feedback control for a class of nonlinear SISO observable, minimum phase systems with
unknown time-varying parameters belonging to a known compact set whose time
derivatives are bounded, but are not restricted to be small or to have known bounds. More
recently, Ge and Wang [8] proposed a robust adaptive tracking method for time-varying
nonlinear systems in the strict feedback form with completely unknown time-varying
virtual control coefficients, uncertain time-varying parameters and unknown time-varying
bounded disturbances. The proposed design method does not require any a priori
knowledge of the unknown coefficients except for their bounds.

Also, in the area of chaos control, initiated by Ott et al. [22] for the case of known
parameters, when the parameters are unknown but constant, different techniques have
been used [9–15,18,19], but when the parameters are unknown and time-varying, only few
results have been reported [16,17]. The techniques used in the case when the parameters are
unknown but constant include adaptive observers, proposed by Liao and Tsai [10],
adaptive backstepping [9,14,15,18], Lyapunov’s stability theory [11–13] and theory of
invariant manifolds [19].

In the case of time-varying uncertain chaotic systems Li et al. [16] proposed a robust
adaptive tracking control for a class of nonlinear plants when the control matrix is known
and equal to the identity. The desired trajectory and its first time derivative are assumed to
be known. The method imposes two assumptions on the plant to be controlled, the second
one being very restrictive. This method was simplified in [17] relaxing the second
assumption and assuming that a desired trajectory and its first time derivative are known
to the designer. Later, in [21], a method where the constraint of the second assumption is
moved from the plant to the reference model introduced, is presented. Lately, a further
attempt to generalize these results was made in [20] where it is considered only one
assumption concerning the boundedness of the time-varying parameters and both cases
when a model reference or a desired trajectory and its time derivative are known, were
resolved.

In this paper a new effort to generalize these previous results is made, considering the
adaptive stabilization of a class of nonlinear plants with arbitrarily fast time-variations,
when the control matrix B is unknown but constant and boundedness on the time-varying
parameters is the only assumption.

The paper is organized as follows. In Section 2, the adaptive stabilization of a class of
nonlinear plants is treated, considering the case when the control matrix B is both
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unknown and known. Section 3 is devoted to the adaptive stabilization when the plant is
linear, discussing the cases of B unknown and known. In Section 4, simulation results for
the case of nonlinear and linear plants are presented, considering only the case of B

unknown. Finally, in Section 5 some conclusions are drawn.

2. Adaptive stabilization of nonlinear plants

Let us consider the nonlinear plant described by the following dynamics

_xðtÞ ¼ f ðxÞ þ F ðxÞyðtÞ þ BuðtÞ (1)

where xARn corresponds to the state vector of the system, which is assumed to be
accessible, f(x)ARn and F(x)ARn� p are known continuously differentiable functions with
f(0) ¼ 0 and F(0) ¼ 0. f(x) and F(x) are bounded for x bounded. BARn� n is a constant,
nonsingular but unknown matrix, u(t)ARn is the input to the plant and y(t)ARp is the
unknown time-varying parameter vector, which we assume belongs to a bounded and
closed set, as stated in the following assumption.

Assumption 1. The unknown parameter vector y(t) ¼ [y1(t), y2(t),y, yp(t)]
TARp belongs

to a bounded and closed set O, where O ¼ ½y1; ȳ1� � ½y2; ȳ2� � � � � � ½yp; ȳp�, with
yi; ȳi for i ¼ 1; 2; . . . ; p unknown constants representing the lower and upper bounds,
respectively, on the components of vector y(t)ARp.

From Assumption 1, we can immediately write

kyðtÞk ¼
Xp

i¼1

yiðtÞ
2

 !1=2

�
Xp

i¼1

max½jyij
2; jȳij

2�

 !1=2

9b (2)

where bAR is an unknown constant parameter.
The objective is to determine a bounded input u(t) such that x(t) goes to zero

asymptotically, in spite of the arbitrarily fast time variations of the plant parameters. In
particular we are interested that

lim
t!1

xðtÞ ¼ 0 (3)

either globally or in a certain region around the origin. We express f(x)ARn function in
terms of f0(x)ARn function as

f ðxÞ ¼ AmxðtÞ þ f 0ðxÞ (4)

with

f 0ðxÞ ¼ f ðxÞ � AmxðtÞ (5)

where AmARn� n is any asymptotically stable matrix. We then choose the control law
u(t)ARn in the following fashion

uðtÞ ¼ K1ðtÞ½�f 0ðxÞ þ aðe;x; b
_
Þ� (6)

where K1(t)ARn� n is a matrix of adjustable parameters and aðe; x; b
_
Þ 2 <n is given by

aðx; b
_
Þ ¼ �

F ðxÞmðxÞ b

Þ 2

kmðxÞk b
_
þ�kxk2

(7)
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with

mT ðxÞ ¼ xT PF ðxÞ (8)

where P ¼ PTARn� n is a symmetric and positive definite matrix solution of the Lyapunov
equation

AT
mPþ PAm ¼ �Q (9)

where Q ¼ QTARn� n is any symmetric and positive definite matrix, with 0o2eolmin(Q),
where lmin(Q) is the minimum eigenvalue of matrix Q. We also choose the adaptive law
forb

_
ðtÞ 2 < given by

_
b
_
ðtÞ ¼ gkmðxÞk (10)

with b
_
ðt0Þ40 and g40. Then we can state the following theorem regarding the stability of

the adaptive system (1), (5)–(10).

Theorem 1. Let us suppose that Assumption 1 is satisfied for system (1). If we choose the

control law given by Eqs. (5)–(9) with 0o2eolmin(Q) and the adaptive law given by Eq. (10)
with b

_
ðt0Þ40 and g40, then the resulting system is locally uniformly stable and

limt!1 xðtÞ ¼ 0, provided the parameters K1(t) is adjusted in the following fashion:

_K1 ¼ K1Px½f 0ðxÞ � aðx; b̂Þ�T KT
1 K1 (11)

It is important to notice that since

d

dt
ðK�11 ðtÞÞ ¼ �K1ðtÞ

d

dt
K1ðtÞ

� �
K1ðtÞ (12)

the adaptive law (11) can be written in an equivalent form as

_FK1
ðtÞ ¼ �Px½f 0ðxÞ � aðx; b̂Þ�T KT

1 ðtÞ (13)

where FK1
ðtÞ 2 <n�n is defined as

FK1
ðtÞ ¼ K�11 ðtÞ � K��11 (14)

with K1*
�1ARn� n defined in Eq. (18).

Proof. Replacing Eq. (6) in Eq. (1) we can write

_xðtÞ ¼ AmxðtÞ þ f 0ðxÞ � BK1f
0
ðxÞ þ F ðxÞyðtÞ þ BK1aðx; b

_
Þ (15)

Adding and subtracting the term aðx; b
_
Þto Eq. (15), the dynamics of the state is

given by

_xðtÞ ¼ AmxðtÞ þ ½I � BK1�f
0
ðxÞ � ½I � BK1�aðx; b

_
Þ þ F ðxÞyðtÞ þ aðx; b

_
Þ (16)

Regrouping terms we get

_xðtÞ ¼ AmxðtÞ þ ½I � BK1�½f
0
ðxÞ � aðx; b

_
Þ� þ F ðxÞyðtÞ þ aðx; b

_
Þ (17)

If we define the following ideal controller parameters K*1ARn� n satisfying the following
equation

½I � BK�1� ¼ 0) K�1 ¼ B�1 or K��11 ¼ B (18)
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we can write the following identity:

½I � BK1� ¼ ½K
�1
1 � B�K1 ¼ ½K

�1
1 � K��11 �K1 ¼ FK1

K1 (19)

½I � BK1ðtÞ� ¼ FK1
ðtÞK1ðtÞ (20)

with FK1
2 <n�n defined in Eq. (14).

Then we can rewrite Eq. (17) as

_xðtÞ ¼ AmxðtÞ þ FK1
K1½f

0
ðxÞ � aðx; b

_
Þ� þ F ðxÞyðtÞ þ aðx; b

_
Þ (21)

Now we will analyze the stability of the resulting adaptive system defined by Eqs. (21),
(10) and (11) (or Eq. (13)). To that extent we choose the following Lyapunov function
candidate

V ðx;FK1
; b̃Þ ¼

1

2
xT Pxþ TracefFK1

FT
K1
g þ

1

g
eb2� �

(22)

where xðtÞ 2 <n, FK1
ðtÞ ¼ K�11 ðtÞ � K��11 2 <n�n, with K��11 ARn� n defined in Eq. (18), and

b̃ðtÞ ¼ b
_
ðtÞ � b 2 <, with b defined by Eq. (2).

We now compute the first time derivative of Eq. (22) along the system (21), (10) and (13)

_V ¼
1

2
_xT Pxþ xT P _xþ 2Tracef _FK1

FT
K1
g þ

2

g
b̃ _̃b

� �
(23)

Replacing ẋT and ẋ given by Eq. (21) in the previous expression we get

_V ¼
1

2
ðxT AT

mPxþ ½f 0ðxÞ � aðx; b
_
Þ�T KT

1 F
T
K1

Px

þ yT F T ðxÞPxþ aT ðx; b
_
ÞPxþ xT PAmx

þ xT PFK1
K1½f

0
ðxÞ � aðx; b

_
Þ� þ xT PF ðxÞy

þ xT Paðe; x; b
_
Þ þ 2Tracef _FK1

FT
K1
g þ

2

g
b̃ _̃bÞ (24)

Regrouping terms and using the property of two vectors aARn and bARn that
aTb ¼ bTa ¼ Trace{abT} ¼ Trace{baT} we get

_V ¼
1

2
xT ðAT

mPþ PAmÞxþ TracefPx½f 0ðxÞ � aðx; b
_
Þ�T KT

1 F
T
K1
g

þ xT PF ðxÞyþ xT Paðe;x; b
_
Þ þ Tracef _FK1

FT
K1
g þ

1

g
b̃ _̃b (25)

Replacing the adaptive law given by Eq. (13) in Eq. (25) we obtain

_V ¼ �
1

2
xT Qxþ xT PF ðxÞyþ xT Paðx; b

_
Þ þ

1

g
b̃ _̃b (26)

where Q is the matrix chosen in the Lyapunov equation (9). Replacing the definition of
aðx; b

_
Þ and m(x) given by Eqs. (7) and (8), respectively, in Eq. (26) we get

_V ¼ �
1

2
xT Qxþ mT ðxÞyðtÞ �

kmðxÞk2 b

Þ 2

kmðxÞk b
_
þ�kxk2

þ
1

g
b̃ _̃b (27)
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From Assumption 1 and Eq. (2) we can write the following inequality

mT ðxÞyðtÞ � kmðxÞkb (28)

Moreover, the following inequality can be established

�
kmðxÞk2 b

Þ 2

kmðxÞk b
_
þ�kxk2

¼ kmðxÞk b
_
�1þ

�kxk2

kmðxÞk b
_
þ�kxk2

 !

� kmðxÞk b
_
�1þ

�kxk2

kmðxÞk b
_

 !
(29)

Furthermore, it is easy to verify that

�
1

2
xT Qx � �

lminðQÞ

2
kxk2 (30)

where lmin(Q) is the minimum eigenvalue of the positive definite matrix Q.
Replacing Eqs. (28)–(30) in Eq. (27) we get

_V � �
1

2
lminðQÞkx

2k þ kmðxÞkbþ kmðxÞk b
_
�1þ

�kxk2

kmðxÞk b
_

 !
þ

1

g
b̃
_
b
_

(31)

which can be rewritten as

_V � �
1

2
lminðQÞ � �

� �
kx2k � kmðxÞkb̃þ

1

g
b̃
_
b
_

(32)

Finally, replacing the adaptive law given by Eq. (10) in Eq. (32) we obtain

_V � �
1

2
lminðQÞ � �

� �
kx2k (34)

Since 0o2eolmin(Q) then V̇r0. Therefore x(t), FK1
ðtÞ and b̃ðtÞ are globally uniformly

bounded. From this we can conclude that b
_
ðtÞ is also globally uniformly bounded. From

the definition of FK1
ðtÞ given in Eq. (14) we can conclude that K1

�1(t)ARn� n is globally
uniformly bounded but K1(t)ARn� n is only locally uniformly bounded. From Eq. (34) we
can conclude that x(t) is a signal of square integral. From Eqs. (6)–(8) it follows that the
control signal u(t) is locally uniformly bounded. Consequently, from Eq. (21) we conclude
that ẋ(t) is locally uniformly bounded, since it corresponds to a sum and products of
locally uniformly bounded functions. Using the Lemma of Barbalat [24], we can conclude
that locally, x(t)-0 when t-N. Therefore, the controller given by Eqs. (6)–(8) and the
adaptive laws given by Eqs. (10) and (11) (or Eq. (13)) guarantee that system (1) is locally
uniformly stable. &

Remark 1. Notice that in the previous development (Theorem 1) for the general
case of B unknown we need to adjust n2+1 parameters to control plant (1) having
n2+n unknown parameters (n time-varying and n2 constant) and provides only local
stability results.

Remark 2. In the previous analysis done in Section 2, unity adaptive gains were chosen for
simplicity in all the adaptive laws (10) and (11) (or (13)) used in the design. It is possible to
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show that all the results stated in Section 2 will also be valid if constant and positive scalars
adaptive gains are used, or constant and positive definite matrices adaptive gains are
introduced, or finally, time-varying matrices adaptive gains with a special type of variation
are defined [25,26]. The effect of these adaptive gains will be to improve the transient
behavior of the resultant adaptive system.

Remark 3. The convergence of the controller parameter is not guaranteed in the proposed
control scheme. This is achieved only if persistently exciting conditions are met for the
vectors and matrices involved in the adaptive laws (10) and (11) (or (13)).

Remark 4. If the control matrix B has certain particular form, the structure of the
proposed control scheme can be simplified and the scope of the method can be enlarged.
For example if B is a diagonal matrix, invertible, and the sign of all elements on the
diagonal are known, then the resultant controller and adaptive laws have the following
form [23,26]

uðtÞ ¼ K1ðtÞ½�f 0ðxÞ þ aðe;x; b
_
Þ�

with

_K1ðtÞ ¼ signfBgPx½f 0ðxÞ � aðx; b̂Þ�T

where for notation purposes we have B ¼ sign{B}|B|. In this case the results are proven to
be global rather than local [23,26]. Same kind of simplifications can be obtained if the
matrix B is positive definite (and invertible) [23,26] obtaining again global stability results.
Finally, when the matrix B has any general form then we get the results shown in Section 2,
which are only local in nature.

Remark 5. When the matrix B is known, the ideal controller parameter K�1ARn� n given by
Eq. (18) is also known and can be computed and replaced in the control law (6) becoming

uðtÞ ¼ B�1½�f 0ðxÞ þ aðe;x; b
_
Þ�

with aðx; b
_
Þ 2 <n and m(x)ARp given by Eqs. (7) and (8) respectively. In the previous case,

when B is known, adaptation for K1(t)ARn� n is not needed. Thus, uniform global stability
(instead of local) can be achieved for the adaptive system adjusting only the parameter
b
_
2 <, with the adaptation given by Eq. (10) (see Table 1).

Remark 6. When the matrix B is known, no additional assumptions to the boundedness
of time-varying parameters are needed in the approach proposed here, whereas in the
method presented by Li et al. [16] a second quite restrictive assumption is stated,
which narrows the class of nonlinear systems to which the methodology can be
applied. Besides, the desired trajectory and its first time derivative are assumed to be
known. This method (for B known) was simplified in [17] relaxing the second assumption
and assuming that a desired trajectory and its first time derivative are known to the
designer. Later, in [21] a method is presented where the constraint of the second
assumption is moved from the plant to the reference model. Recently, an attempt to
generalize the results in [16,17,21] for the case of B known was made in [20], where it is
considered only the assumption on the boundedness of the time-varying parameters and
both cases when a model reference or a desired trajectory and its time derivative are
known, were resolved.
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Table 1

Summary of stability results.

B f(x) F(x)y(t) u(t) aðx; b
_
Þ

m(x) Adaptive laws Stability

B f(x) F(x)y(t)
�K1ðtÞ½f

0
ðxÞ � aðe; x; b

_
Þ� �F ðxÞmðxÞ b

Þ 2

=kmðxÞk b
_
þ�kxk2

FT(x)Px _
b
_
ðtÞ ¼ gkmðxÞk

Local

BARn� n f(x)ARn y(t)ARp

b
_
2 <; K1ðtÞ 2 <

n�n mARn
_K1 ¼ K1Px½f 0ðxÞ � aðx; b

_
�T KT

1 K1
F(x)ARn� p Am

TP+PAm ¼ �Q

B known

BARn� n

f(x) F(x)y(t)
�B�1½f ðxÞ � AmxðtÞ þ aðe;x; b

_
Þ� �F ðxÞmðxÞ b

Þ 2

=kmðxÞk b
_
þ�kxk2

FT(x)Px _
b
_
ðtÞ ¼ gkmðxÞk

Global

f(x)ARn y(t)ARp

b
_
2 <

mARn

F(x)ARn� p Am
TP+PAm ¼ �Q

B f(x) Y(t)x(t)
KðtÞaðx; b

_
Þ �kxk2Px b

Þ 2

=kmðxÞkF b
_
þ�kxk2

xxTP _
b
_
ðtÞ ¼ gkmðxÞkF

Local

BARn� n f(x)ARn Y(t)ARn� n

b
_
2 <; KðtÞ 2 <n�n mARn� n _KðtÞ ¼ �KPxuT K

x(t)ARn Am
TP+PAm ¼ �Q

B known

BARn� n

f(x) Y(t)x(t)
B�1aðx; b

_
Þ �kxk2Px b

Þ 2

=kmðxÞkF b
_
þ�kxk2

xxTP _
b
_
ðtÞ ¼ gkmðxÞkF

Global

f(x)ARn Y(t)ARn� n

b
_
2 <n mARn� n

x(t)ARn Am
TP+PAm ¼ �Q
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3. The linear case

Based on the results shown in Section 2, several particular cases can be derived. Because
of its general interest we will study in detail the case when the plant is time-varying and
linear with accessible state defined by the following differential equation

_xðtÞ ¼ YðtÞxðtÞ þ BuðtÞ (35)

where x(t)ARn is the state of the system, Y(t)ARn� n represents the matrix of time-varying
and unknown parameters and the matrix BARn� n is a nonsingular matrix of unknown but
constant parameters. u(t)ARn is the plant input. It is assumed that time-varying elements
of the matrix parameter Y(t) are bounded, as stated in the following assumption
(equivalent to Assumption 1 for the vector case).

Assumption 2. The matrix Y(t)ARn� n, belongs to a bounded and closed set O defined by
O ¼ fYðtÞ ¼ ½yijðtÞ� 2 <

n�n=yijðtÞ 2 ½yij ; ȳij �g, with yij ; ȳij for i; j ¼ 1; 2; . . . ; n unknown con-
stant parameters representing the lower and upper bounds, respectively, on the time-
varying parameters yij(t), the elements of matrix Y(t).

The plant given in Eq. (35) can be rewritten as follows:

_xðtÞ ¼ AmxðtÞ þ ðYðtÞ � AmÞxðtÞ þ BuðtÞ (36)

where AmARn� n is any asymptotically stable matrix.
We define the unknown matrix with time-varying parameters Ā(t) ¼ [āij(t)]ARn� n as

ĀðtÞ ¼ YðtÞ � Am 2 <
nxn (37)

From Assumption 2, we can write the following inequality

kĀðtÞkF ¼ ðTrfĀ
T

ĀgÞ1=2 ¼
Xn

i¼1

Xn

j¼1

ā2
ijðtÞ

 !1=2

¼
Xn

i¼1

Xn

j¼1

ðyijðtÞ � aijÞ

2
 !1=2

�
Xn

i¼1

Xn

j¼1

maxfjyij � aijj
2; jȳij � aiji

j2g

 !1=2

9b (38)

where bAR is an unknown constant parameter. J � JF denotes the Frobenius norm of a
matrix.
Now we can state the following theorem for adaptively control system (35).

Theorem 2. Let us consider the linear time-varying system defined by Eq. (35). Let us
assume that Assumption 2 is satisfied and define the control law as

uðtÞ ¼ KðtÞaðx; b
_
Þ (39)

where K(t)ARn� n is an adjustable parameter and aðx; b
_
Þ 2 <n, m(x)ARn� n are given

by

aðx; b
_
Þ ¼ �

kxk2Px b

Þ 2

kmðxÞkF b
_
þ�kxk2

(40)

mðxÞ ¼ xxT P (41)
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with 0o2eolmin(Q) and P ¼ PTARn� n solution of Eq. (9). Let us consider the adaptive
law for b

_
ðtÞ given by

_
b
_
ðtÞ ¼ gkmðxÞkF (42)

with b
_
ðt0Þ40 and g40 an adaptive gain, together with the adaptive law for K(t)ARn� n

(the estimate of K* ¼ B�1ARn� n)

_KðtÞ ¼ �KðtÞBT
mPxuT KðtÞ (43)

Then, the overall adaptive system is locally uniformly stable and also the state of the
linear time-varying system (35) will asymptotically converge to zero.

It is important to notice that the adaptive law (43) can be written equivalently using
property (12) as follows:

_FK ðtÞ ¼ PxuT (44)

where

FK ðtÞ ¼ K�1ðtÞ � K��1 with K��1 ¼ B 2 <n�n (45)

Proof. The proof follows along the same lines as in Theorem 1 for the nonlinear case. Here
we choose the following Lyapunov function candidate

V ðx;FK ; b̃Þ ¼
1

2
xT Pxþ TracefFKFT

Kg þ
1

g
eb2� �

(46)

where b̃ðtÞ ¼ b
_
ðtÞ � b 2 < and FK(t) ¼ K�1(t)�K*�1ARn� n. Computing the first deriva-

tive of Eq. (46) we end up with

_V � �
1

2
lminðQÞ � �

� �
kxk2 (47)

Since 0o2eolmin(Q) then V̇r0 and the overall system is globally uniformly stable. In
particular x(t), FK(t) and b̃ðtÞare globally uniformly bounded. From this we can conclude that
b
_
ðtÞ is also globally uniformly bounded. From the definition of FK(t) given in Eq. (45) we can

conclude that K�1(t)ARn� n is globally uniformly bounded but K(t)ARn� n is only locally
uniformly bounded. From Eq. (47) we can conclude that x(t) is a signal of square integral
(x(t)AL2). From Eqs. (39)–(41) it follows that the control signal u(t) is locally uniformly
bounded. Consequently, from Eqs. (35), (37), (39) and (40) we conclude that ẋ(t) is locally
uniformly bounded (ẋ(t)ALN), since it corresponds to a sum and products of locally uniformly
bounded functions. Using the Lemma of Barbalat [24], we can conclude that locally, x(t)-0
when t-N. Therefore, the controller given by Eqs. (39)–(41) and the adaptive laws given by
Eqs. (42) and (43) (or Eq. (44)) guarantee that the system (35) is locally uniformly stable. &

Remark 7. Theorem 2, applicable to linear systems with 2n2 unknown parameters (n2 time-
varying and n2 constant) of the form (37), guarantees that locally all the signals remain
bounded and the state asymptotically converges to zero by adjusting n2+1 parameters,
providing local uniform stability results for the general case of B unknown.

Remark 8. In the previous analysis done in Section 3, unity adaptive gains were chosen for
simplicity in all the adaptive laws (42) and (43) (or (44)) used in the design. It is possible to
show that all the results stated in Section 2 will also be valid if constant and positive scalars
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adaptive gains are used, or constant and positive definite matrices adaptive gains are
introduced, or finally, time-varying matrices adaptive gains with a special type of variation
are defined [25,26]. The effect of these adaptive gains will be to improve the transient
behavior of the resultant adaptive system.

Remark 9. The convergence of the controller parameter is not guaranteed in the proposed
control scheme. This is achieved only if persistently exciting conditions are met for the
vectors and matrices involved in the adaptive laws (42) and (44).

Remark 10. If the control matrix B has certain particular form, the structure of the
proposed control scheme can be simplified and the scope of the method can be enlarged, as
in the nonlinear case. For example if B is a diagonal matrix, invertible, and the sign of all
elements on the diagonal are known, then the resultant controller and adaptive laws have
the following form [23,26]

uðtÞ ¼ KðtÞaðx; b
_
Þ

with

_KðtÞ ¼ signfBgPxuT

where for notation purposes we have B ¼ sign{B}|B|. In this case the results are proven to
be global rather that local [23,26]. Same kind of simplifications can be obtained if the
matrix B is positive definite and invertible [23,26] obtaining again global stability results.
Finally, when the matrix B has any general form then we get the results shown in Section 3,
which are only local in nature.

Remark 11. For the case when the matrix B is known, it can be shown that the resulting
adaptive scheme adjusts only one parameter. In fact, since B is known so is
K* ¼ B�1BmARn� n. Replacing K(t) in the control law (39) by the ideal controller
parameter K* the control input becomes

uðtÞ ¼ B�1aðx; b
_
Þ (48)

with aðx; b
_
Þ 2 <n and m(x)ARp given by Eqs. (44) and (45), respectively. Therefore,

adaptation for K(t)ARn� n is not needed. Thus, uniform global stability can be achieved
for the adaptive system adjusting only the parameter b

_
2 <, with the adaptation given by

Eq. (42) (see Table 1).

4. Simulation results

In order to verify the behavior of the proposed method we will simulate the case of a
nonlinear plant in Section 4.1 and for the case of a linear plant in Section 4.2.

4.1. Nonlinear system

Let us consider the second order continuous-time nonlinear plant of the form (1) defined
by

_x1 ¼ x2 þ x1x
2
2y1 þ b1u1

_x2 ¼ x1x2 þ x2x2
1y2 þ b2u2 (49)
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where y1(t) ¼ 2(1+0.1 cos(1.5t)), y2(t) ¼ 4(1+0.15 cos(0.75t)), b1 ¼ 1.8 and b2 ¼ 3.2.
Beside, the following initial conditions were chosen xð0Þ ¼ ½ 0:7 0:5 �T 2 <2.

The controller u(t)AR2 in this case is defined by Eqs. (6)–(9), together with the adaptive
laws (10) and (11). The controller parameters were chosen as e ¼ 10 and g ¼ 2, and the
initial conditions for the adaptive parameters have the following numerical values

b(0) ¼ 1, K1ð0Þ ¼
0:50 0:03

0:02 0:30

� �
.

Fig. 1 shows the evolution of the states of the plant. It can be observed that the state
goes to zero as t goes to infinity. The behavior of the controller parameters b(t) and K1(t)
are shown in Fig. 2. As expected, the parameter b(t) evolves from its initial value up to a
final bounded value determined by the stability conditions of the adaptive system. Finally,
the evolution of the control input applied to the plant is shown in Fig. 3.

4.2. Linear system

Let us now consider the second order continuous-time linear plant of the type defined in
Eq. (35) as

_xðtÞ ¼ AðtÞxðtÞ þ BuðtÞ (50)

where the time-varying plant parameters have the following form

a11 ¼ 1ð1þ 0:1 cosð1:5tÞÞ a21 ¼ 0:02ð1þ 0:05 cosð0:75tÞÞ

a12 ¼ 0:04ð1þ 0:05 cosð0:75tÞÞ a22 ¼ 2ð1þ 0:1 cosð1:5tÞÞ
(51)

and the matrix B is defined by b11 ¼ 2, b21 ¼ 0, b12 ¼ 0.02 and b22 ¼ 1.5. The plant initial
conditions were set as xð0Þ ¼ ½ 0:1 0:4 �T 2 <2.

In this case the controller is defined by Eqs. (39)–(41) together with the adaptive
laws (42) and (43). The controller parameters were chosen as e ¼ 0.01 and g ¼ 100, and the

initial conditions for the parameter estimates are b(0) ¼ 0.1 and Kð0Þ ¼
0:5 0:02

0:002 �0:18

� �
.
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Fig. 1. Simulation of the nonlinear time-varying system. Evolution of the plant state.
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In Fig. 4, the evolution of the state of the plant is plotted. Like in the nonlinear case, it
can be observed that the state goes to zero as t goes to infinity. The behavior of the
controller parameters b(t) and K(t) are shown in Fig. 5. As expected, the parameter b(t)
evolves from its initial value up to a final bounded value determined by the stability
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Fig. 2. Simulation of the nonlinear time-varying system. Evolution of the control parameters (b̂, K1).

Fig. 3. Simulation of the nonlinear time-varying system. Evolution of the control input.
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conditions of the adaptive system. Finally, the evolution of the control input applied to the
plant is shown in Fig. 6.

In all the simulations presented in this section the behavior observed is as expected and
as predicted by the theoretical results exposed in Sections 2 and 3.
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Fig. 4. Simulation of the linear time-varying system. Evolution of the plant state.

Fig. 5. Simulation of the linear time-varying system. Evolution of the control parameters (b̂, K).
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5. Conclusions

Using Lyapunov’s stability theory a new scheme for adaptive stabilization of
time-varying linear and nonlinear plants was designed. This control scheme allows
that the state of the plant with bounded time-varying parameters converge asymptotically
to zero.
For the nonlinear case given by Eq. (1) having n2+n unknown parameters (n time-

varying and n2 constant unknown parameters), when the matrix B is unknown the
controller has to adjust n2+1 parameters and the proposed scheme provides only local
stability results. On the contrary, when the matrix B is known only one parameter has to be
adjusted and the proposed scheme provides global stability results.
For the linear case given by Eq. (35) having 2n2 unknown parameters (n2 time-varying

and n2 constant unknown parameters), when the matrix B is unknown the controller has to
adjust n2+1 parameters and the proposed scheme provides only local stability results. On
the contrary, when the matrix B is known only one parameter has to be adjusted and the
proposed scheme provides global stability results.
In order to verify the behavior of the controller based on Theorems 1 and 2, a set of

simulations were presented for both, linear and nonlinear second-order systems assuming
that matrix B is unknown, and was found that the simulation results are in complete
agreement with the theoretically expected results presented in Sections 2 and 3.
Simulation results (not shown here for the sake of space) indicate that the overall

adaptive system performs quite well and the use of adaptive gains in the adaptive laws can
be introduced to modify the transient behavior and the convergence to zero.
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Fig. 6. Simulation of the linear time-varying system. Evolution of the control input.
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