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Abstract In this work, a new on-line method for detecting
incipient failures in electrical motors is proposed.The method
is based on monitoring certain statistical parameters esti-
mated from the analysis of the steady state stator current (for
broken bars, saturation, eccentricities, and bearing failures)
or the axial flux signal (for coil short-circuits in the stator
windings). The approach is based on the extraction of the en-
velop of the signal by Hilbert transformation, pre-multiplied
by a Tukey window to avoid transient distortion. Then a wave-
let analysis (multi-resolution analysis) is performed, which
makes the fault diagnosis easier. Finally, based on a statisti-
cal analysis, the failure thresholds are determined. Thus, by
monitoring the mean value estimate it is possible to detect an
incipient failure condition on the machine.

Keywords Hilbert transform · Wavelet transform · Fault
detection · Broken bar detection · Motor fault detection ·
Motor failure diagnosis · Statistical analysis

1 Introduction

The first methods utilized to detect motor failures, such as
chromatographic analysis, noise analysis, temperature anal-
ysis and vibration analysis, have been slowly changing to
new on-line monitoring techniques for electrical equipments
[2,3,10,12,13,17,25,28,31]. One of these new methods is
the monitoring of the stator current. In this context Martelo
[17] and Schoen et al. [25] study bearing failures based on
the Fast Fourier Transform (FFT) analysis. Using the same
tool, Benbouzid et al. [2] and Cameron et al. [3] analyze other
types of failures such as rotor slot effect, saturation, and static
and dynamical eccentricities.

At the Electrical Engineering Department of the Uni-
versity of Chile, Gallardo [6], Barrios [1] and González [7]
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have developed a phenomenological model to simulate bro-
ken bars in the rotor of an induction motor and other kind
of failures, using as diagnosis methods the short-term Fou-
rier Transform (STFT), multi-resolution analysis (MRA) and
also FFT in the transient period.

Regarding failures associated to coil short-circuits in the
stator windings, Williamson and Mirzoian [33] developed
a model to simulate this type of failure analyzing the posi-
tive and negative sequence components of the stator current.
Unfortunately, the model requires a large number of param-
eters, which were obtained after performing a large number
of tests on the machine at different operating temperatures.
Penman et al. [22] propose a methodology of fault detection
based on the analysis of the machine axial flux using FFT. Sot-
tile and Kohler [27] present a fault detection method using the
negative sequence component obtained by decomposing the
stator current into the symmetric components, getting good
practical results. However, Tallan et al. [29] showed that this
result is not always reliable, since the negative sequence is
present not only when there is coils short-circuit in the stator
winding but also when there is a voltage unbalance. Toliyat
and Nandi [32] suggest a diagnosis of coil short-circuits by
monitoring certain rotor slot related harmonics at the termi-
nal voltage of the machine once it is switched off. In the
absence of supply voltage, issues like voltage unbalance or
the presence of other harmonics due to frequency converters
do not affect the measurements. Although useful, the method
cannot be applied on-line.

Lazarevic and Petrovic [14] use wavelets and the decom-
position of the stator current to detect broken bars, but in-
stead of using the envelop of the detail coefficients, these are
squared to suppress electric noises, obtaining good results
when comparing a sane and a failed motor. Combastel et al.
[4] apply wavelets to the stator current to detect broken bars
and coil short-circuits on the basis of models of the motor
based on Park transformation.

Ross [24] and Montanari et al. [19] apply the Weibull dis-
tribution to insulation failures and they propose the estimation
of α and β parameters, in order to predict breakdown events
of the machine insulation, using maximum likelihood (ML)
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and linear regression (LR) methodology. Yacizi and Kliman
[34] propose a statistical following of the motor failures on
the rotor and bearings but assuming a Gaussian distribution
and using the STFT, to avoid confusing certain machine states
with an incipient failure.

The main objective of this paper is to propose a method
that is able to detect incipient failures in electrical machines
by analyzing the steady sate stator current (such as bro-
ken bars, saturation, eccentricities, and bearing failures) or
coil short-circuits in the stator windings, if the axial flux is
available. The approach is based on the extraction of the en-
velop of the signal to be analyzed using Hilbert transform,
pre-multiplied by a Tukey window to avoid transient dis-
tortion. Next, a wavelet analysis similar to that proposed by
Lazarevic and Petrovic [14] is performed, but now the effects
of the transient are attenuated making the diagnosis a lot eas-
ier. Since a failure can be intermittent or can be associated
to certain load levels, it is proposed to perform a statistical
analysis, like the one proposed by Yacizi and Kliman [34],
to determine fault thresholds. In this case the Weibull dis-
tribution is used and its parameters α and β are estimated
computing the mean value and the standard deviation, and
these are used to estimate the fault thresholds.

The paper is organized so that in Sect. 2 the envelop anal-
ysis is presented and in Sect. 3 the use of the wavelet analysis
is illustrated. Sect. 4 is devoted to the analysis of the exper-
imental data obtained from two motors mounted in the lab-
oratory. In Sect. 5 a statistical analysis based on the Weibull
distribution is presented and in Sect. 6 the proposed scheme
to detect incipient failures is illustrated using data obtained
from industrial measurements. Finally, in Sect. 7 some con-
clusions are drawn.

2 Hilbert transform and envelop analysis as a tool
for fault detection in induction motors

In this section it is demonstrated that the Hilbert transfor-
mation of the original stator current signal followed by the
spectrum analysis of the envelope of its analytic signal is a
useful tool for fault detection in electric motors [9,10,14].

We will first recall the Hilbert transformation of a function
of time and then the concept of analytic signal is introduced.
Next, the envelop is obtained as the absolute value of the ana-
lytic signal and the envelop spectrum is obtained by taking
the FFT [15,26] of the envelop. We will refer to this analysis
as envelop analysis or envelop spectrum analysis and it will
be compared with the so called classical analysis or classi-
cal spectrum analysis where the spectrum (FFT) is computed
directly from the original function of time.

This methodology is applied to the analysis of a model of
a stator current signal for a motor with a broken bar (failed)
and compared with the analysis of a model of a stator current
corresponding to a normal motor (sane). Also, this compara-
tive analysis is performed for signals experimentally obtained
in the laboratory from two identical motors; one normal and
one with a broken bar (See Appendix). In both cases it is

found that the frequency spectrum of the envelope is shifted
in 50 Hz.

Although only the failure associated with a broken bar
is analyzed in this paper, the methodology can be used for
many other types of failures through the analysis of the steady
state stator current, such as bearing failures, saturation and
eccentricities, and also coil short-circuits in the stator wind-
ing (through the axial flux signal) [9,10].

2.1 Hilbert transform

Le us consider a real time signal x(t). The Hilbert transform
y(t)= H x(t) is defined as [16]

y(t) = 1

π

∫ ∞

−∞

x(τ)

τ − t
dτ (1)

Using the mean value Theorem we can evaluate (1) to get

y(t) = 1

πt
∗ x(t) (2)

Therefore, y(t) is obtained as the convolution between the
function 1/πt and the original signal x(t) Since the Fourier
Transform of 1/πt is

F

(
1

πt

)
= −jsgn(f ) =

{−j if f > 0
j if f < 0 (3)

where f is the frequency in Hertz, this means that the positive
frequencies of the spectrum of x(t) are shifted by –90◦ and
the negative frequencies are shifted by 90◦. The Hilbert trans-
form can then be viewed as a filter of amplitude unity and
phase ±90◦ depending on the sign of the frequency of the
input signal spectrum.

When a real signal x(t) and its Hilbert transform y(t) =
H {x(t)} are used to form a new complex signal defined as
[16]

z(t) = x(t)+ jy(t) (4)

then the signal z(t) is called the a nalytical signal associated
with x(t). The signal z(t) has the property that all the negative
frequencies of x(t) have been filtered.

2.2 Envelope analysis: a new formulation of the fault
frequency

The envelope E(t) of a complex signal z(t) is defined as

E(t) = |z(t)| = |x(t)+ jy(t)| (5)

that is, the absolute value of the analytical signal defined in
(4). To understand better this concept let us compute the enve-
lope of the model of the stator current of a motor presenting a
broken bar in its rotor. The spectrum of such signal presents
a peak at frequency 2sf and can be modeled as [9,10]

I (t) = Asen(ωt)+ Bsen[(ω + 2sω)t]

where s is the slip and f is the frequency in Hertz. The
analytic signal associated with I (t) is z(t) = I (t)+ jIy(t),
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where Iy(t)=H {I (t)} denotes the Hilbert Transform
of I (t). Since

Iy(t) = −A cos(ωt)− B cos [(ω + 2sω)t] (6)

then z(t) is

z(t) = −jAejωt − jBej2sωtejωt

= −jejωt
[
A+ Bej2sωt

]
(7)

Finally, the absolute value of z(t) (the envelope) is given by

E(t) = |z(t)| = ∣∣A+ Bej2sωt
∣∣ (8)

From (8) it can be clearly seen that the fundamental fre-
quency is no longer present but we have the double of the
slip frequency (2sω). Thus, the failure frequency is now rep-
resented by peaks at ±2sω in the spectrum of the envelope
and no longer atω±2sω, as in the classical spectrum analysis
of the original signal. We can state that the envelope is the
magnitude of the sum of the amplitude of the fundamental
component A and the phasor B oscillating at the failure fre-
quency 2sω. In Table 1 and Fig. 1 it is shown the values of
the expression (8) for different values of 2sωt .

From Fig. 1 it is observed that the variation corresponds to
a sinusoid of frequency 2sω around the fundamental compo-
nent of magnitude A. Moreover, it can be concluded that the
importance of the envelope analysis, as compared with classi-
cal spectrum analysis of the original signal, is that it allows to
suppress the component with fundamental frequency and to
work with failure frequencies, making easier the fault detec-
tion process.

Table 1 Variation of the magnitude of the envelope (2.8)

2sωt |E (t) |
0 A+B
π/2

√
A2 + B2

π A−B
3π/2

√
A2 + B2

2π A+B

B

A

A2
+B

2

A+B

A-B

π/2 3π/2 2π 0 2sωtπ

Fig. 1 Envelope of the stator current for a motor with a rotor broken
bar

Finally, the previous analysis was done for Eqs. (6–8)
which represent an idealized case. This is done only to illus-
trate how the method works in the ideal case and in the next
section the method is used in real oscillograms with distorted
waveforms.

2.3 Interpretation in the frequency spectrum

In what follows we will apply the classical spectrum anal-
ysis and the envelope analysis to the stator current signals
obtained experimentally from two identical motors; one nor-
mal and one having a broken bar in its rotor. The signals were
obtained from two 5.5 HP motors whose nominal characteris-
tics are described in the Appendix and obtained by González
[7]. The signals for the failed motor were registered using a
sampling frequency of 10 KHz, allowing analyzing up to a
maximum of 5 KHz with a frequency resolution of 0.25 Hz,
whereas for the normal motor a sampling period of 5 KHz
was used, which means an analysis up to 2.5 KHz [51].

In Figs. 2–5, the differences between both methodologies
can be appreciated, the analysis being more precise when
using the envelope spectrum of the stator current (Fig. 5)
as compared with the classical spectrum analysis (Fig. 3).
Figure 2 shows the original current signal of phase ‘ a’for the
motor under failure, whereas in Fig. 3 its Fourier transform
(power spectrum) it is shown. Figure 4 shows the envelope of
the original signal Fig. 2, computed according to (8). Finally,
the power spectrum of the envelope plotted in Fig. 4 is shown
in Fig. 5. From Figs. 3 and 5 it can be seen that the spectral
analysis of the envelope is simpler than the spectral analysis
of the original signal to identify failure frequencies. Note that
when the Hilbert transform is used, it is necessary to look for
the frequency ±2sf (Fig. 5) and not for 50 ± 2sf, as in the
classical spectrum analysis (Fig. 3).

Fig. 2 Stator current for the motor under failure
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Fig. 3 Spectrum of the stator current for the motor with a broken bar

Fig. 4 Envelope of the stator current for the motor under failure

The methodology that uses the power spectrum of the
envelope of the original stator current signal has been shown
here for detecting a failure corresponding to a broken bar in
the rotor. However, the same methodology can also be used
to analyze other type of motor failures such as saturation and
eccentricities, bearing failures, coil short-circuits in the sta-
tor windings and their combinations. A detailed analysis of
these types of failures and the corresponding failure frequen-
cies associated with this methodology can be found in [9,
10].

3 Wavelets and its application to fault detection

Wavelets analysis allows representing functions of time satis-
fying certain mathematical requirements [4,5,11,14,18,20,

Fig. 5 Spectrum of the envelope of the stator current for the failed
motor

21,30]. Unlike Fourier analysis, in wavelet analysis the scale
used to analyze the signal plays an important role. In wavelet
analysis, the signals are processes at different scales or reso-
lutions. Thus, if we look at the signal with a wide window, we
will identify general characteristics, whereas if a small win-
dow is used then we obtain detailed information about it [21].
Another important feature that makes wavelets interesting is
that they allow the analysis of choppy and non-stationary
signals.

3.1 Continuos wavelet transform

Unlike Fourier transform, the technique based on wavelets
allows to perform, through a multi-resolution analysis (MRA),
several overlapped projections of the signal. For a signal f (t)
the generating function of the MRA can be expressed as [18]

ϕ
j

k (t) = 2−j/2ϕ(2−j t − k) (9)

whereϕ is the so called mother wavelet, j indicates the decom-
position level and k is the time shift factor. The wavelet coeffi-
cients obtained by applying an orthogonal wavelet are [18]

d
j

k =
∞∫

−∞
f (t)ψ

j

k (t)dt (10)

where ψj

k is the wavelet analyzing function obtained from ϕ.
For example, Haar, Morlet, Shannon, etc. could be used.

3.2 The discrete wavelet: multi-resolution analysis (MRA)

Let s(n) be a discrete-time signal to be decomposed into its
approximate and detailed versions using the MRA. The first
level decomposition coefficients are a1(n) and d1(n), where
a1(n) is the approximate version of the original signal s(n)
and d1(n) is the detailed representation of the original signal
s(n) which are defined as [5],
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Fig. 6 Multi-resolution analysis (MRA) decomposition algorithm
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Fig. 7 Scale and frequency dependence of the wavelets

a1(n) =
n∑
k

h(k − 2n)s(k)

d1(n) =
n∑
k

g(k − 2n)s(k)

(11)

where h(n) and g(n) are the decomposition filters of s(n) in
a1(n) and d1(n), respectively. The next (second) decomposi-
tion level is based on a1(n) and the coefficients are given by
[5],

a2(n) =
n∑
k

h(k − 2n)a1(k)

d2(n) =
n∑
k

g(k − 2n)a1(k)

(12)

Upper level decompositions can be obtained in a similar
fashion. The coefficients aj and dj are computed using the
tree decomposition algorithm allowing storing low frequency
information of the signal as well as the discontinuities.

In Fig. 6 [4] h, g, represent the decomposition filters and
↓ 2 denotes a down sampling by a factor of 2. Thus, we
can conclude that a1(n) being the approximate version of
the original signal, h(n) behaves as a low pass filter. If d1(n)
contains only high frequency components of signal s(n), then
g(n) behaves as a high pass filter.

Detailed and approximate coefficients of a signal are re-
lated to its spectral content. The MRA performs a dilatation of
the spectrum towards the low frequencies, as shown in Fig. 7
[4]. That is why by analyzing the spectrum of the approxi-
mate and detailed coefficients at a higher level, the spectral
content of the signal can be analyzed [5].

3.3 Application to fault diagnosis

The first consideration before applying the MRA algorithm
to obtain good signal decomposition, is the selection of the

most suitable wavelet for the desired purposes. There is no
clear criterion to select the most adequate wavelet, but it is
convenient to use only one type of wavelet for the whole
decomposition process.

It is also recommended to use high decomposition levels
(greater than four). For lower levels the mother wavelet is
located more in time and oscillates faster in a short period of
time. As the wavelet goes to higher levels, it is located less
in time and oscillates less due to the dilatation nature of the
wavelet transform. Therefore, fast and low type of faults can
be detected with one type of wavelet.

A practical suggestion is to use a wavelet “similar” to the
nature of the perturbation to be analyzed. In this study we
have chosen the wavelet Symlet 8 [5]. Symlet is a family of
wavelets that are almost symmetric and were proposed by
Daubechies as a modification to the family of Daubechies
wavelets (db). Both families have similar properties.

4 Experimental results

In what follows we will apply the MRA procedure to the
stator current signals obtained experimentally in the labora-
tory from two identical motors; one normal and one having
a broken bar in the rotor, as described in Sect. 2.3 [7].

4.1 Application of the MRA

The MRA was carried out decomposing the original cur-
rent signals into 10 levels, each one of them having its own
detailed coefficients and a determined range of frequencies,
as shown in Tables 2 and 3 for a motor under failure and one
without failure, respectively.

The MRA of the stator current for both motors was done
using the MATLAB Wavelet Toolbox, where the wavelet
Symlet 8 with 10 decomposition levels was selected [4].
At the seventh level we could find important differences for
the failed motor, since it contains the frequency components
f ± 2sf, which in this case are 42 and 58 Hz (see Table 2).
The same is also true at the sixth level for the sane motor (see
Table 3).

Table 2 Multi-resolution analysis (MRA) decomposition levels for the
motor under failure

Level Frequency range [Hz]

From To

1 5,000 2,500
2 2,500 1,250
3 1,250 625
4 625 312.5
5 312.5 156.25
6 156.25 78.12
7 78.12 39.06 (50±2sf = 42, 58)
8 39.06 19.53
9 19.53 9.76

10 9.76 4.88 (2sf = 8)
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Fig. 8 Level decompositions for a sane motor (left) and one with a broken bar in the rotor (right). Notice the differences between the seventh
level (fault) and sixth level (sane)

Table 3 MRA decomposition levels for the sane motor

Level Frequency Range [Hz]

From To

1 2,500 1,250
2 1,250 625
3 625 312.5
4 312.5 156.25
5 156.25 78.12
6 78.12 39.06 (50 ± 2sf = 42, 58)
7 39.06 19.53
8 19.53 9.76
9 9.76 4.88 (2sf = 8)
10 4.88 2.44

In Fig. 8 we can see the comparison of the total decom-
position between both signals and in Fig. 9 we can compare
the detail coefficients corresponding to the seventh level for
the failed motor and for the sixth level for the sane motor.

Although there are differences of the detail coefficients
for the failed motor, it is not convenient to directly compare
both of them, since at these levels the fundamental component

(50 Hz) plays an important role and it is present in the whole
analysis.

Due to the above inconvenience, the same procedure was
followed for the envelops of both signals, taking first the Hil-
bert transform, to eliminate the fundamental component in
both signals.

Figure 10 shows the decomposition for the envelope of
the signals coming from the failed and sane motors. Now
we have to look for the frequency 2sf, i.e. 8 Hz in this case.
Therefore, according to Tables 2 and 3, we have now to pay
attention at the tenth level for the failed motor and at the ninth
level for the sane motor. For a better comparison, the detailed
coefficients of both the above mentioned levels are illustrated
in Fig. 11.

The differences between Figs. 9 and 11 are evident when
comparing the appropriate levels for both motors. In Fig. 11
the transient exhibited at the beginning and at the end of
the decomposition is due to the filter used for realizing the
decomposition. For a better comparison it is preferable to
compare the envelopes of the signals as shown in Fig. 12,
instead of the detail coefficients shown in Fig. 8.
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Fig. 9 Comparison between the signals for the failed and sane motors, corresponding to the seventh and sixth levels, respectively

Fig. 10 Wavelet decomposition of the envelops of the stator current for a sane motor (right) and one with fault (left). Notice the difference between
the ninth level (sane) and the tenth level (fault)
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Fig. 11 Detail coefficients of the envelop decomposition for the sane
motor (ninth level) and failed motor (tenth level)

Fig. 12 Envelopes of the detail coefficients (Fig. 4.4) corresponding to
the ninth level (sane) and tenth level (failed)

4.2 Transient suppression

The MRA carried out in the previous section allows a better
comparison between the failed and sane motors. It can be
noticed from Figs. 11 and 12 that the values should be close
to those observed between 1 and 3 s, but the transient does
not allow getting clearer results. For this reason a window
was used to pre-multiply the envelope in order to suppress
the transient effects. A Tukey window was selected which is
of the cosine type graduated according to the parameter α.
When α ≤ 0, the window becomes rectangular and when
α ≥ 1 it becomes a Hanning window. Figure 13 shows the
form of the Tukey window for different values of α [30].

Fig. 13 Form of the Tukey window for different values of α

In this study, a value of α = 0.225 was chosen and the
envelope was pre-multiplied by this Tukey window. Then the
detailed coefficients were computed for the ninth level (sane
motor) and tenth level (failed motor) suppressing success-
fully the transients as shown in Fig. 14.

Comparing Figs. 11 and 12 with Fig. 14 it is evident the
improvement obtained by suppressing the transient in the
wavelet decomposition allows a better comparison between
the sane and failed motors and hence a better fault diagnosis.

To complete the failure analysis, it remains to estimate
the fault threshold. To this extent statistical analysis will be
used in the next section to determine trends and mean values.

5 Weibull distribution as a tool for fault detection

In order to complete the fault diagnosis process, a methodol-
ogy is proposed to estimate the expected mean values for each
level where a fault is present. Thus, a more reliable compar-
ison can be done to establish failure thresholds. To perform
this estimation the Weibull distribution was chosen. Unlike
other probability distributions, this distribution allows us to
observe the displacement of the mean value when the motor
goes from a state without failure to a state under failure.

5.1 The Weibull distribution

The probability distribution and density functions for a Wei-
bull distribution are given by

F(x;α, β) = 1 − e−[ xα ]β (13)

f (x;α, β) = β

α

[x
α

]β−1
e−[ xα ]β (14)

where α is the scale parameter and β is the shape parame-
ter. The Weibull distribution is used to describe cases where
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Fig. 14 Comparison of the detailed coefficients (left) and their envelopes (right) once the Tukey window was applied

a small value of a parameter determines the behavior of the
whole system [24]. Since they are normally unknown, the
parameters α and β of the Weibull distribution have to be
estimated from the current signals. In this study we will use
the ML method to estimate α and β [24]. Their estimates will
be denoted as a and b, respectively.

The ML method will be used in this study because its
insensitivity to data dispersion and moderate computational
resources. The method is based on the optimization of the
likelihood function L(a, b,Xi), or its logarithm, defined as
[24]

lnL(a, b;Xi) =
n∑
i=1

lnf (Xi; a, b)
lnL(a, b;Xi) = nlnb − nlna

+(b − 1)
n∑
i=1

ln
Xi

a
−

n∑
i=1

[
Xi

a

]β (15)

The estimates a and b are obtained through the maximization
of L, or more conveniently ln L . This leads to the following
conditions [24]

∂lnL

∂a
= ∂lnL

∂b
= 0 (16)

Assuming the data follows a Weibull distribution the above
conditions become∑n

i=1X
b
i lnXbi∑n

i=1X
b
i

− 1

n

n∑
i=1

lnXbi = 1, (17)

which has no analytic solution and has to be solved numer-
ically, typically using the Newton-Raphson method, finding
the estimate b. The estimate a is obtained by replacing b in
the following equation

ab = 1

n

n∑
i=1

Xbi (18)

It is known that the ML method estimate has a bias [24].
The bias depends on the size of the sample and the degree
of censoring. Recently, two methods have been proposed to
reduce the bias in the shape estimate b for the case of uncen-
sored data. One is based on pivotal functions [23] and other
on a relative (or generalized) likelihood function [8]. In this
study we will use the methodology based on pivotal func-
tions. Thus, a function bU is used to obtain a better estimate
of b. The chosen function here is [24]

bU = n− 2

n− 0.68
b (19)

where n is the number of data. This expression reduces the
bias typically to less than 0.3% of β [24].

In order to determine the fault threshold we shall compute
the means value T̄ and the standard deviation σ . The mean
value (MV) for the Weibull distribution is given by

T̄ = α · 

(

1

β
+ 1

)
(20)

where

(

1
β

+ 1
)

is the Gamma function evaluated in
(

1
β
+1

)
.

The standard deviation (SD) is given by

σ = α

√



(
2

β
+ 1

)
− 


(
1

β
+ 1

)2

(21)

5.2 Experimental verification of the estimates

Now we shall use the information contained in the stator cur-
rents for the two 5.5 HP motors described in Sect. 2.3 and in
the Appendix, obtained by González [7]. In Sect. 4, the infor-
mation of the envelope of the detail coefficients was obtained
through wavelet analysis. Using this information for the level
where the fault is located (tenth) and assuming a Weibull dis-
tribution, we shall estimate the MN and the SD.
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From the results shown in Sect. 4 we define two vectors
of dimension 54, one for the envelope in the ninth channel
(sane motor) and one for the envelope in the tenth channel
(failed motor). Ten frequency intervals were selected and the
histogram for each motor was built, as shown in Tables 4 and
5. The same information is shown in Figures 5.1 and 5.2.

From Tables 4 and 5, and Figs. 15 and 16 it can be seen
that there is a trend towards the value 0.3 for the sane motor
and to a value close to 1 for the failed motor (broken bar).
This coincides with the envelopes obtained in Fig. 14.

The next step in the analysis is to estimate the probability
distribution function (i.e. the α and β parameters) for both
cases. In order to get a good estimation of β we use the ML
method with the pivotal function bU described in (19). Table 6
shows the function, number of samples and errors obtained
in the numerical solution of Eq. 17 by the Newton–Raphson
method.

Once a and b are obtained, the distribution and density
probability functions are computed, also the mean value esti-
mate (MVE) and the standard deviation estimate (SDE) are
calculated. These are shown in Table 7.

In Figs. 17 and 18 are plotted the probability density func-
tion and the probability distribution function for both motors.
The density functions are in complete agreement with the
information contained in the histograms, obtaining for the
sane motor an MVE of 0.3358 and for the motor under fail-
ure an MVE of 0.9585.

Finally, in Fig. 19 the envelops are illustrated together
with the MVE. It can be seen that the MVE are in agreement

Table 4 Frequency distribution for the sane motor

Interval number Mean value interval Frequency

1 0.0689 10
2 0.1722 10
3 0.2755 15
4 0.3788 5
5 0.4821 4
6 0.5854 3
7 0.6888 3
8 0.7921 0
9 0.8954 1

10 0.9987 3
TOTAL 54

Table 5 Frequency distribution for the motor with a broken bar

Interval number Mean value interval Frequency

1 0.1078 3
2 0.2694 3
3 0.4311 3
4 0.5927 4
5 0.7543 3
6 0.916 6
7 1.0776 13
8 1.2392 9
9 1.4008 7

10 1.5625 3
Total 54

Fig. 15 Histogram for the sane motor

Fig. 16 Histogram for the motor with a broken bar

Table 6 Pivotal function and convergence errors in the Newton–
Raphson method

Total data bU Error sane motor Error failed motor
number (n)

54 0.9752b 2.463E-04 1.011E-06

Table 7 Statistical parameters for a sane motor and a failed motor
MVE mean value estimate; SDE standard deviation estimate

Parameter Sane motor Failed motor

α 0.3698 1.0794
β 1.4361 2.576
MVE 0.3358 0.9585
SDE 0.2373 0.3993
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Fig. 18 Probability distribution function for the envelopes of the detailed coefficients

with those of Figs. 17 and 18. Though it is not possible to
completely suppress the transient effect, the result is quite
satisfactory

This fact will allow monitoring on-line the MVE for both
motors and performing an incipient diagnosis of a broken bar
in the rotor. For example, when the motor is in good condi-
tion (sane) the evolution of the MVE can be monitored, and
if it get closer to one, it would mean that a failure of the
broken bar type has occurred or is about to occur. Also, mon-
itoring each frequency level and comparing with predeter-
mined thresholds will allow the reliable diagnosis of incipient
failures.

6 A new scheme for incipient fault detection

Based on the results exposed in the previous sections we can
now establish a methodology for incipient fault diagnosis in
induction motors including broken bars, coil short-circuits,
saturation and eccentricities, or bearing failures.

6.1 General methodology

The general block diagram of the proposed methodology is
shown in Fig. 20. In this scheme we can distinguish first an
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Fig. 20 Block diagram of the methodology for detecting incipient failures

envelope analysis like the one explained in Sect. 2, followed
by a transient suppression stage. Next an MRA based on
wavelets is applied, ending up with the on-line computation
of the MVE.

6.2 Application to real data

We will apply the methodology described in Sect. 6.1 to
the case of two induction motors each one of them mov-
ing a 600 m conveyor belt located in the Candelaria copper
mine, in the III Region of Chile. The ratings of the motors
are 1,500 HP, 3.3 kV, 4 poles and 1,485 rpm. The data was
obtained by González [7] and we will denote the motors as
A and B.

A recording of the stator current for both motors was
done in the field while the motors were working under normal

Table 8 Level decomposition for MRA

Level Frequency range [Hz]

From To

1 640 320
2 320 160
3 160 80
4 80 40
5 40 20
6 20 10
7 10 5
8 5 2.5
9 2.5 1.25

10 1.25 0.6125

conditions. The signals were sampled at a frequency of
1,280 Hz and after the MRA decomposition is done, we get
the results shown in Table 8 for each level.
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Once the general scheme is applied with α = 0.225 for
the Tukey window, the results are shown in Figs. 21 and 22,
where the resulting densities and distributions are plotted for
each motor. In Fig. 23 the envelopes with their respective
MVE are shown. In Table 9, the values of the parameter esti-
mates are presented.

An incipient failure can be observed at 4 Hz, therefore
(according to Table 6.1) the level to observe is the eighth.
Although the differences between the two motors are not that
noticeable as in the case of the experimental analysis for the
two 5.5 HP motors done in Sect. 2.3, there is a clear tendency
to a bar breakage in motor B. The diagnosis should suggest

then a closer monitoring of the MVE for the motor under
suspicion.

Moreover, it is important to mention that the sampling fre-
quency used to register the signal in this case is low (1,280 Hz).
It is also suggested to repeat the test with higher sampling
frequencies, to obtain more details and to avoid possibly ali-
asing, then loosing important information.

Finally, as far as the advantages of the proposed method
with respect to other methodologies we can state the following:

(a) The method suggested here allows identifying in a much
easier way the fault frequencies by suppressing the fun-
damental.
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Fig. 23 Envelopes of the detailed coefficients and the corresponding MVE

Table 9 Statistical parameters for motors A and B

Parameter Motor A Motor B

α 0.0982 0.1371
β 1.6989 1.6586
MVE 0.0876 0.1225
SDE 0.0531 0.0759

Table 10 Nameplate data for the motors in the experimental set up in
the laboratory

Failed motor Sane motor

Make WEG WEG
Power [HP] 5.5 5.5
Velocity [RPM] 1440 1425
Voltage [V] � 380 380
Y 660 660
Current [A] � 9.3 8.7
Y 5.4 5.01
Frequency [Hz] 50 50
Insulation class F F

(b) Using the proposed method, not only can fault frequen-
cies be detected but also phenomena like saturation and
slot effects.

(c) With this methodology there is no need of logarithmic
scales as in the direct application of FFT.

(d) The proposed methodology is not based only on one test,
but it can be repeated several times giving a certainty to
the user that in fact there is a fault.

(e) By using the MRA, the evolution through time of a failure
can be observed and analyzed.

(f) In spite of the use of more sophisticated tools in the
proposed methodology, its on-line implementation is not
difficult.

The main disadvantages of the proposed methodology
are:

(a) Although the implementation is not difficult, it requires
the use of additional tools (Hilbert Transform, Tukey
windows, MRA, etc.), which are not as commonly used
in industry as the FFT and Hanning windows.

(b) Handling the transient effects generated by the MRA is
dedicated, and a bad choice of the coefficient of the Tukey
window can lead to erroneous results.

7 Conclusions

In this paper, the development of a new methodology for
incipient fault detection in electrical machines was proposed.
The methodology can be implemented on-line and it is based
on the envelope concept and analyzing not only the spectrum
of the signals (frequency domain analysis) but also analyzing
the signals in the time domain by means of the MRA. The
statistical method included in the methodology provides the
necessary tools to analyze the trends of the fault components
and to make a closer following of incipient failures.

The method is valid for analyzing not only steady-state
stator current signals to detect broken bars, bearing malfunc-
tioning, rotor slot effects, saturations, and dynamical and
static eccentricities, but also the rotor axial flux signal (when
available), detecting coil short-circuits in the stator windings,
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and analyzing vibration signals to detect bearing failures (the
last two types of failures not treated in this paper).

The envelope analysis, with the help of the Hilbert trans-
formation, produced quite satisfactory results. The elimina-
tion of the fundamental component allows a clearer identifi-
cation of the fault frequencies.According to the analysis done
in this study, to apply this methodology it is recommended
to use a sampling period greater than or equal to 0.25 s.

The multi-resolution analysis is demonstrated to be use-
ful to analyze the failure components through time and not in
certain specific points of time. It was observed that this anal-
ysis is conveniently performed on the envelope of the detail
coefficients but not directly over the stator current. The multi-
plication of the signal by a Tukey window constitutes another
novelty of the proposed approach to eliminate the transient
effects, allowing a better comparison at the different decom-
position levels between a sane motor and one presenting a
failure of the type analyzed here.

Due to the intermittency of the failures, a statistical treat-
ment of the data was suggested to avoid incorrect diagno-
sis. The Weibull distribution, and the methodology chosen to
determine its parameters, allowed establishing failure thresh-
olds, avoiding comparing graphics data and having an index
of the state of the machine. Monitoring the MVE is a use-
ful tool that allows more precise judgments about incipient
faults, making the fault diagnosis easier, which constitutes
another contribution of this work.

Besides the analysis based on models, the proposed meth-
odology was validated with signals obtained in the laboratory
and also from data obtained in the field.

As future work, it is necessary to perform studies of much
longer duration on machines operating in the laboratory and
in the industry in order to evaluate the proposed methodology
under different types of failures. Also, new ways of suppress-
ing the effects of the transient is another point for further
study to improve the diagnosis of incipient faults using this
methodology.
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28. Stone G, Campbell S, Tetreault S (2000) Inverter-fed drives: which
motor stators are at risk?. IEEE Ind Appl Mag 6(5):17–22

29. Tallam R, Habetler T, Harley R (2002) Transient model for induc-
tion machines with stator winding turn faults. IEEE Trans Ind Appl
38(3):632–637

30. The Mathworks Inc (2001) Signal processing toolbox. Matlab, The
language of technical computing. Version 6.1.0.450, Release 12.1.
May 2001

31. ThomsonWT, Fenger M (2001) Current signature analysis to detect
induction motor faults. IEEE Ind Appl Mag 7(4):26–34

32. Toliyat H, Nandi S (2002) Novel frequency-domain-based tech-
nique to detect stator inter-turn faults in induction machines us-
ing stator-induced voltages after switch-off. IEEE Trans Ind Appl
38(1):101–109

33. Williamson S, Mirzoian K (1985) Analysis of cage induction mo-
tors with stator winding faults. IEEE Trans Power Apparatus Syst
PAS-104(7):1838–1842

34. Yacizi B, Kliman G (1999) An adaptive statistical time frequency
method for detection of broken bars and bearing faults in motors
using stator current. IEEE Trans Ind Appl 35(2):442–452


