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A deceptively simple difference equation is derived which approximately describes the
motion of a small ball bouncing vertically on a massive sinusoidally vibrating plate. In
the case of perfect elastic impacts, the equation reduces to the “standard mapping” which
has been extensively studied by physicists in connection with the motions of particles
constrained in potential wells. It is shown that, for sufficiently large excitation velocities
and a coeflicient of restitution close to one, this deterministic dynamical system exhibits
large families of irregular non-periodic solutions in addition to the expected harmonic
and subharmonic motions. The physical significance of these and other chaotic motions
which appear to occur frequently in non-linear oscillations is discussed.

1. INTRODUCTION

Recently Wood and Byrne [1] studied a simple model impact process relevant to the
study of noise generation in machinery. In their model, a small ball bounces vertically
on a massive vibrating table, each impact being governed by the relationship

V() — W) =—a(Ulg) - W(), (1)

where U, V and W are, respectively, the absolute velocities of the approaching ball,
the departing ball and the table, 0 <a =<1 is the coefficient of restitution and ¢ =1 is the
time of the jth impact. It is assumed that the impact does not affect the velocity of the
table. All velocities in equation (1) are measured vertically upward and it is assumed
that the ball reverses its direction in the impact, which it will if |U(5)]» |W ()W ()
must be greater than U(r;) for impact to occur at all). If one further assumes that the
distance the ball travels between impacts under the influence of the gravitational
acceleration, g, is large compared with the overall displacement of the table, then the
time interval between impacts is easily approximated as

i~ 4=2V(1)/ g (2)
and the velocity of approach at the (j+ 1)st impact as
Ulti)=—=V(5). 3)

Combining equations (1), (2) and (3) gives the recurrence relationship relating the
state of the system at the (j+ 1)st impact to that at the jth in the form of a non-linear
mapping, or pair of difference equations:

ta=4t+2Vilg, Vim=aVi+(1+a)W(+2V/g), (4)
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where V; = V(). Since the ballisin free flight between impacts, the dynamics is completely
determined by V; and ¢, which one can therefore call the state of the system at the jth
step.

Wood and Byrne [1] studied the behavior of such a system for the case of random
(Gaussian) excitation W. In their paper they mentioned experimental evidence which
suggests that, even with sinusoidal excitation, apparently random, non-periodic motions
are observed, if the excitation level is sufficiently high. In this paper it is proved that
such motions do indeed occur in the deceptively simple mapping (4), and a topological
description of (some of) them is given.

It is convenient to non-dimensionalize equations (4). With the displacement of the
plate expressed as —f sinwt, then W = —wf cos wt (the negative sign is chosen for
convenience in subsequent calculations). In terms of the non-dimensional time ¢ = wt
and velocity v =2wV/g, and with y = 2w?(1+a)B/g, one obtains the mapping f = f..,:

fr b=tV Vini=aV;—vycos(¢;+ V). (5)

In the mapping (5) y plays the role of force amplitude and « of dissipation. It is easy
to verify that the mapping (5) is a smooth invertible one, or diffeomorphism [2], its
inverse being given by

J ¢i-1=¢;—(1/a)(y cos ¢; + V}), v, 1=(1/a)(y cos ¢;+ V). (6)

Note that for a =1 (perfect elastic impacts) the mapping is area preserving, since then
the determinant of the Jacobian

1 1

det (Df) = det [y sin (¢; + V;) a+ysin(d;+ V,»)J “« ™
is unity. Also the mapping is invariant under the translation ¢ — ¢ + 2n7, and hence is
27r-periodic in ¢, so that the (¢, v) state space is topologically the cylinder, S' x R, rather
than the plane. This is important in the subsequent analysis.

The area preserving case, @ = 1, has been intensively studied, mostly by physicists (on
account of its relevance to certain problems in particle physics), including Taylor [3],
Chirikov {4], Greene [5] and Lichtenberg, Lieberman and Cohen [6], for example. In
their work a slightly different co-ordinate system is chosen and the diffeomorphism is
referred to as ‘‘the standard map”. Moreover, Pustylnikov [7-9] considered the
mechanical problem outlined above and derived an exact mapping for the case of general
periodic excitation and showed that both it and the approximate mapping (5) have open
sets of initial conditions (¢, vg) such that v, -» o0 as n - o for suitable finite values of y
and a = 1. Along with these unbounded motions, sets of bounded periodic motions are
also found and numerical computations suggest that bounded non-periodic motions also
exist (cf. references [4, 5]).

In references [4] and [5] the “transition to stochasticity”, which occurs as vy is increased,
is considered. For small y all orbits remain bounded and most of them behave in a
regular (=periodic or quasiperiodic) manner, but as y increases the initially small regions
filled with chaotic or stochastic motions grow until the phase space is ultimately almost
completely filled with non-periodic motions. Various heuristic criteria, involving a delicate
analysis of the stabilities of long period motions, have been derived to aid in the analysis
of this transition. The interested reader is referred to Green’s excellent survey [5] or
the provocative paper of Chirikov [4] for more information. For general background on
“*stochastic’’ Hamiltonian systems see the monograph of Lichtenberg and Lieberman[10].

This paper is concerned with the effects of dissipation (a # 1). Chirikov and Izraelev
[11] considered a different dissipative modification of the standard map but otherwise
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little work has been done in this area. Initially one might think that all complex behavior
mentioned above would disappear with the addition of damping. However in other
oscillatory problems in which periodic forcing and damping are applied it is known that
sustained chaotic motions are observed [12-15]. Precisely the same phenomenon occurs
in the mapping (5), and this is proved in section 3. Before this, in section 2 a brief review
is provided of some aspects of two dimensional mappings and some of the simple periodic
motions exhibited by the mapping (5) and their realizations in the motions of the bouncing
ball are discussed. In sections 3-5, a global analysis of the map is presented and in
sections 4 and 5 some aspects of the complicated invariant sets and bifurcations which
occur as vy is increased for fixed a <1 are discussed. Finally, in section 6 some physical
conclusions are drawn and mention is made of some other, similar, impact governed
problems.

2. FIXED POINTS, PERIODIC ORBITS AND LOCAL BIFURCATIONS

Before considering periodic behavior in particular, it is helpful to recognize that there
is one major difference between the dissipation free and dissipative cases. As already
noted, Pustylnikov [9] showed that the mapping (5) with @ =1 possesses unbounded
orbits for suitable (large) values of y. It is easy to see that no such orbits exist for a <1,
provided that y is bounded, since, from equations (5),

loje1l <lav;—y cos (¢;+ v <o+ 7. (8)

(Recall that, while it has been assumed that v >0 for physical reasons, the mapping is
well defined for all —co < v <00.) Thus, if

lo;l>v/(1-a), (9)

one finds that |v;,,| <|v,|, implying that all orbits remain bounded and, in fact, must enter
astrip bounded by v = +v/(1 —a) as J increases.

One can now seek fixed points of the mapping f: points (¢, 7) such that f(d,0)= (b, D).
From equations (5) these are easily found to occur in pairs:

(¢, 0a) = (arccos nm(a —1)/vy), 2n1), n=0,x1,+2,..., N, (10)
where N is the greatest integer such that
2N (l—a)<1y. (11)

Inderiving equation (10) use has been made of the periodicity of the state space, by setting
¢ =0¢+2nm, n=0,+1,+2,.... (12)

The stability of these fixed points is determined by the linearized map, Df, of equation
(7). For a good review of such matters, with mechanical applications in mind, see reference
[16], or [17]. If both eigenvalues are inside the unit circle in the complex plane ([A;| < 1),
one has a sink, if one lies outside and one inside (A, <1 <|A,)), a saddle, and if both
lie outside, a source. Since

XA =det (Df) =a, (13)

only sinks and saddles are obtained for @ <1. If @ =1 one finds centers and saddles,
From equation (7) the eigenvalues are given by

Aa=H{(1+a+ys) V(1 +a +v5) —4al, s =sin (¢ + 7). (14)
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Inserting (¢n, ) from equation (10) one finds that the fixed points with b, < m(sin (b +
#)>0) are all saddle points of the first kind [16] while those with ¢, > 7 (sin (@ +0)<0)

are sinks (centers) if

2nm(l—a)<y<2V¥n’zm (1—-a)’+(1+a)’, (15)
and saddles of the second kind [16] if

y>2Vnt i (1-a) +(1+a)’. (16)

(Orbits approaching and leaving such a saddle do so in an oscillatory manner—such
fixed points are sometimes called “reflection hyperbolic” in the physics literature.) The
values

vo=2nmw(l-a), vyh=2vn’m*(1-a)’+(1+a)’ (17)

are bifurcation values at the first of which a pair of fixed points appears in a saddle-node
bifurcation {5, 16] and at the second of which a change of stability occurs. Such bifurca-
tions are called local since they occur at a degenerate fixed point or periodic orbit. The
next piece of analysis reveals that a period two motion appears at y,. This second
bifurcation is therefore a “flip”.

Iterating f twice gives

Gir2= @i+ (1 +a)v;— vy cos (¢; +v;),
Vir2 = alav; —y cos (¢; +v;)) — 7y cos (¢, + (1 + a)v; — vy cos (¢; + vy)), (18)
which leads to the following conditions for points of period 2, (d;, D) =f(f(d;, V)):
ycos (b +d)=(1+a)d+2km,  ycosd=—(1+a)d—2kma, k=0,x1,%2,....

(19, 20)
In the perfectly elastic case, a = 1, equations (19) and (20) may be added to yield
cos (d;+13)+cosa§=0, (21
implying either
cos (8/2)=0 or cos(d+5/2)=0, (22)

and leading to points of period 2 with co-ordinates

(q‘;, 7)=(arccos (—22m + k + D) /v), @m — 1)), (23)
and
(&, 0)=($, 2m + 1) —24), (24a)
where ¢ = ¢ is a solution of
ycos g =22¢p—-2m+k+1)m). (24b)

When a <1 the analysis is considerably more difficult and must be performed numeri-
cally, However, it is clear that equations (19) and (20) do not always have real solutions,
and that new solutions appear as y increases. It can now be shown that the value v, of
equation (17), at which one of the solutions (@, B,) loses stability, coincides with the
appearance of a stable orbit of period two which bifurcates from (qi,, 0,). One first sets
¢ = ¢, >m and v = 2nw in equations (19) and (20). Using equation (10), one finds that
k must be set equal to —2# to study bifurcations from (d;,,, 7, ). Doing this, and eliminating
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¢ from equations (19) and (20), one obtains the equation _
y(cos (¢ + (dnma —y cos $)/(1+a))+cos ¢) +4nm(1—a)=0. (25)

A numerical study of this equation reveals that it has just two solutions (the fixed points
of equation (10)) for y € [y., ¥ ], no solutions for y <y, and four solutions for y > y,.
Thus the bifurcation is supercritical, yielding a stable orbit of period two for Y>>y
Subsequently this orbit becomes unstable at a third bifurcation value v» and a stable
orbit of period four appears.

Moreover, as y continues to increase, further pairs of period two orbits appear for
each (fixed) value of n, as study of equation (25) reveals. Thus, for large y one has orbits
of both periods one and two, whose numbers grow indefinitely as y > .

In principle one can go on to study orbits of higher periods but the computations
rapidly become impractical. For example, one finds cascades of bifurcations to successively
higher period orbits, and some aspects of this type of behavior will be described in
section 5. Even in the case a =1 approximations must be made to obtain workable
results. Rather than continuing this analysis, the reader is referred to the papers of
Greene [5] and Schmidt [18], in which bifurcations of periodic motions are studied in
some detail. In the following sections a global analysis of the map is described which
clarifies these local bifurcation results and enables one to assemble them into an overall
picture.

Period one, n =1

. Period one, n=2
\
\
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Figure 1. Period one and period two motions, a =0-9. The period two motions appear in flip bifurcations

at y =y, (a) Bifurcation diagram; (b) physical motions. , Stable period one; - - —, unstable period one;
<o»—--+, stable period two.
(b)
2 o T T —T m =
¢ T+ Peniod four Perod two
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Figure 2. Examples of other period two motions, which exist for all values of y, « =1. These bifurcate to
period four at y = 2. (a) Bifurcation diagram; (b) physical motions.
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Before starting the global analysis, however, it is useful to discuss some of the periodic
orbits in more detail and comment on their physical significance. Results are presented
graphically. Figure 1 is a bifurcation diagram showing the period one and some of the
period two motions; note that there are two families of the latter motions and here only
those that arise in period doubling bifurcations, as discussed above are shown. In Figure
2, for the case a = 1 some members of the second family of period two orbits are shown,
and also the physical motions associated with some of these orbits.

3. THE EXISTENCE OF HORSESHOES

In 1963 Smale [19] gave an example of a two dimensional diffeomorphism with
infinitely many periodic points. His example was inspired by results of Levinson [20] on
a version of the forced van der Pol equation. Subsequently such motions were proven
to occur in this equation by Levi [21] and a similar diffeomorphism was found in the
Poincaré maps [2] associated with other forced non-linear oscillators [12-15]. Smale’s
diffeomorphism has been named the horseshoe, since it deforms a rectangle in the state
space into the shape of a horseshoe (cf. Figures 3 and 5, below). Subsequently Moser
[22] provided explicit criteria which, if met, guarantee the existence of horseshoes in
specific maps. In this section it is verified that the map (5) meets these conditions for
sufficiently large y and o sufficiently close to one. This section is somewhat technical
and the reader may prefer to glance at the figures and the main result and then go
directly to section 4 where the horseshoe map is described in more general terms.

Moser’s results [22] are as follows. Given the unit square Q =[0, 1]x[0, 1] in the
(x, y) plane a horizontal strip is a set {(x, Mxel0, 1], yel[hi(x), ha(x)]} where h;(x),
i=1, 2 are horizontal curves: i.e., |h; (x) = b, (x3)] < w|x) — x,) forsome 0 < u < 1. Similarly
a vertical strip is bounded by curves x = v;(y) where |v:(y))~v;(y2)| < |y, — yo|. The
assumptions Al and A2 for the map f: Q » R* are as follows.

Al. Let H,, V,, i =1, 2, be disjoint horizontal and vertical strips respectively and let
f(H) =V,

A2. There exist sector bundles $* ={(¢ n)||£|< u|n|} defined over V,U V, and §° =
{(& m)|Inl<ule)} defined over H,UH, with 0<w <1 such that Df(§“)=S“ and
Df™($*) = S". Moreover, if Df (£, 1) = (¢1, n1) and Df (£, mo) = (111, &) then |n,|>
(1/wm)mol and [€-1]> (1/u)|&|. The second condition implies that f and its linearization
Df expand vertical distances and contract horizontal ones in a controlled manner.
(Actually it is sufficient that A2 hold on (V, U V)N (H, U H,), since the invariant set
one seeks is confined to these four squares—this fact is used later.)

Under these two assumptions, Moser proved that f possesses a horseshoe, or, more
precisely, that there is an invariant set A for [ such that f restricted to A(f],) is
homeomorphic to a shift on an alphabet of two symbols. The shift is explained in section
4, and Moser’s theorem given below, after verification of A1 and A2 for the particular
map of interest here.

One starts by demonstrating the existence of pairs of disjoint “‘horizontal” and “ver-
tical” strips H,, Vi, i =1, 2, such that f(H;)= V. One then estimates conditions on the
derivatives Df, Df ' of the map f and its inverse restricted to H; and V,. The satisfaction
of these latter conditions guarantees that the non-wandering set A is hyperbolic [2] and
hence stable to small perturbations in the map.

LEMMA 1. For a =1 and y =4 the map f possesses a topological horseshoe: i.e.,
there are ““horizontal” and “‘vertical” strips Hy, Vi, such that f(H)=V, i=1, 2.
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Here a *“horizontal” strip is understood to be bounded by curves v = v(¢) with lv'|<2
and a “vertical” strip is bounded by curves ¢ = ¢ (v) with |¢'| <1/2 (the ideal situation
of Moser’s result rarely occurs in practice!).

Proof. Note that, for a = 1, f is periodic in both ¢ and v with period 2. Without loss
of generality, one may pick as basic domain Q the parallelogram ABCD bounded by
the lines ¢ +v =0 (AB), ¢ +v =27 (CD), ¢ =0 (AD), ¢ =27 (BC) (see Figure 3).

6 (a) 1 T T T TS T T
0 -
c A cH
D’ -
8 £
c' D’*
A cH
B { | | 1
27 0] " 2w

Figure 3. The creation of horseshoes as y increases for the area preserving case, a = 1. The points A, B,
C, D are mapped to A', B, C', D'. (a) y =3m; (b) y = 5m.

Note that Q is foliated by the family of lines ¢ +v =k, k €[0, 27] and that the images
of such lines under f are vertical lines ¢ =k, ve[k —2m —ycosk, k — v cos k]. Finally,
the images of the boundaries ¢ =0 and ¢ =2# are curves v =¢—ycosg, v=
&—=2m —y cos ¢.

To obtain the required disjoint strips it is sufficient to ensure that A'D’, the image of
AD (the boundary ¢ =0), intersects AB (¢ + v = 0) in two distinct points. A'D' is given
by v=¢ — v cos ¢ and AB by v = —¢ and thus one requires that

ycos ¢ =2¢ (26)

has two distinct roots in (0, 27). It is easy to see that there are precisely two such roots
provided that y = 4. Moreover, simple computations reveal that, for y =4, the slopes
of the curves bounding V' and V, are less in magnitude than 1 and those bounding H,
and H, less in magnitude than 2.

Remark 1. More delicate estimates reveal that y can be somewhat reduced without
destroying the topology of the strips.

Remark 2. Since the images A’D’ and B'C' of AD and BC are givenby v = ¢ — y cos ¢
and v = ¢ —2m — y cos ¢ respectively it is easy to compute bounds between which the
vertical strips V; and V, must lie. They are given by the appropriate roots of the following
equations:

Vitrootsof ¢ —ycos ¢ =—¢ and ¢ —27 —y cos ¢ =27 — ¢ between Oand 7, (27)
Viirootsof ¢ =27 —ycosp =2m —¢p and ¢ —y cos ¢ = —¢ between 7 and 2. (28)

It is easy to see that, as y increases, these roots converge on 7/2 and 37/2 respectively,
and thus that the widths of V; and V, decrease with increase of y. For example, solutions
of equations (27) and (28) show that, for y = S, the ¢ co-ordinates of points in V,; and
V3 lie in the intervals (1-39, 2:13) and (4-48, 5-49) respectively. Using the inverse map
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f~! one finds that the corresponding horizontal strips H;, H, are similarly bounded by
¢ +v=1-39,2-13 and 4-48, 5-49 (all co-ordinates are given in radians).

LEMMA 2. For vy sufficiently large (5w is sufficient), there are sector bundles S“(p),
S*(p) based at points p € Ui_jzl_z (H: N V;) centered on lines ¢ = const and ¢ + v = const
respectively and each of angularextent w/4, such thatrDf(S"(p)) = $“(p) ande’l(S‘(p)) c
S*(p). Moreover, Df(p) expands vertical distances by a factor of at least 5-5 and Df ™’
expands ‘“‘horizontal” distances by a factor of at least 4-5,

Remark. Here, lines ¢¢ + v = const. are termed ‘‘horizontal”.

Proof. Linearizing the map, one has

Df[l 1 ],Df,,l[l«#s —H’ (29)

s 1+s -s

where s = y sin (¢ + v) or y sin ¢ respectively. From the estimates above, for y =57 one
has ¢ +ve(1:39, 2:13)U(4-48, 5-49) for pe H{UH, and similar bounds for ¢ for
p € V1U V,. This shows that [sin (¢ + )|, [sin ¢|>0-716 for points p e J,,_, , (H;NV}),
or |y sin (¢ +v)), |y sin ¢|>11-24.

Only the estimate for sector $“ nced be considered here since that for §° is obtained
similarly. Consider the image of the sector $" shown in Figure 4 under the map Df. Let

Figure 4. The vertical sector bundles §* and their images under Df.

the “‘corners” of §“ be given by the points (£0-414, 1) (tan /8 =0-414). Taking
s =11-24 one obtains the images (1-:414, 16-89), (0-586, 7-587) respectively and taking
s =—11-24 one obtains (1:414, -14-893), (0-586, —5-587) respectively. Since |s|=
ly sin (¢ +v)| > 1124 for points p € H,N V; and increases of |s| make the images of the
sectors ecven larger and thinner, the estimate is obtained.

The computation for “horizontal” sectors, bounded by lines of angle —#/8, —3#/8,
is slightly more awkward but proceeds in a similar manner. One ends by noting that,
for y>5m, |y sin (¢ +v)], |y sin ¢|>11-24 and thus that the estimates hold for all y> 5.

These two lemmas establish the conditions of Moser’s assumptions 1 and 3 ([22),
Chapter 3). Here in the choice of sectors Moser’s parameter u has been taken as
w =tan /8 =0-414, The sector bundle estimates guarantee that f maps vertical strips
to vertical strips with a contraction of at least » = /(1 ~u)=~0-706 and that f ' maps
horizontal strips with a similar contraction.

These facts, together with the fact that, for a = 1, det (Df) =det (Df ") =1<1/2u*=~
2-917, imply the following.

THEOREM 3. For y=5n and a« =1 the map (5) possesses a zero dimensional,
invariant, hyperbolic, Cantor set A. The map f restricted to A is homeomorphic to the shift
on two symbols.
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The hyperbolic structure of A, and its structural stability, imply that the theorem also
holds for a # 1, but sufficiently close to 1. Thus it follows that one has a complicated
invariant set A,, possessing countably many periodic orbits of all periods and uncountably
many bounded non-periodic motions, even in the weakly dissipative case. (Improved
estimates on the relative values of y and « # 1 for which one obtains a horseshoe could
easily be obtained by the methods used in this section.) However, when « # 1 the map
is not periodic in v and then the image of each strip in the (¢, v) phase cylinder, bounded
byp+v=2(n+1)m ¢+v=2nm is no longer a simple translation of that of the basic
strip bounded by ¢ + v =2, ¢ +v = 0. This is taken up in section 5.

4. THE IMPLICATIONS OF HORSESHOES
This section is concerned with a simple piecewise linear mapping which retains all the
important qualitative features of the horseshoe map defined on the strips H;. The
exposition is partially taken from the works of Chillingworth [2], Moser [22], Nitecki
[23] and Newhouse [24], following the original work of Smale [19]. For the unit square
Q=[0, 1]x[0, 1] consider the map F: Q » R’ defined such that
F([O’ 1]X[0: V]):[O, /-L]X[O9 l],F([O’ l]X[l_V, l]):[l_/.L, ]]X[O, 1]’ 0<“ <v< 1/2a
(30)
where the horizontal and vertical strips are
H1=[O, l]X[O,V], V1=[0,#]X[0, 1],
H,=[0,1}x[1-»,1], Vo=[1-pu,1]1x][0,1]. (31)
F is assumed to be linear on H, and H,, with
-1 0

0 _1/V] for peH, (32)

DF(p)=[’6 1?1/] for peH,, DF(p)=[

and F([0, 1]x (v, 1 —v)) is assumed to lie outside Q (see Figure 5).
The non-wandering set A, of points which remain in Q for all backward iterates of F
is given by

A=) F*(Q)=QNFQ)NFXQ)N .... (33)
k =0

QNF(Q) is precisely the pair of vertical strips VU V, of Figure 5. The image of each
of these itself intersects Q in a pair of strips: cf. Figure 5(b). The reader will not find it

, \
‘ P *
! . \
I D N c
RN
\\\ N -~ H,
I-v :
S
v //’ /| //
AN
X N ,\/ H| (ljl_)
0 A4=4 s B=0
0] n = !
Ve cY%

Figure 5. A piecewise linear horseshoe. (a) QN F(Q); (b) F(QNF(Q)).
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difficult to verify that {1, _, F*(Q) consists of 2" vertical strips each of width " and
thus in the limit one obtains an uncountable set of vertical lines, since (2u)" - 0 as n - 0o,
Hence A, = C, X[0, 1], where C, is the Cantor set obtained by removing the middle
fraction 8, =(1—2u) of the horizontal interval [0, 1], followed by the middle 8, of the
remaining closed intervals, ad infinitum. Similarly one finds that A,, the set of points
remaining in Q for all forward iterates of F, is given by A, =[0, 1]x C,, where C, is the
middle &, = (1-2vr) Cantor set of the vertical interval. Thus the non-wandering set of
points which never leave Q is given by A = A, N A, = C, x C,, and is itself a Cantor set.

One can label each of the points peA with a doubly infinite symbol sequence
{an(p={...a_2(p)a_i(p) - as(p)ai(p)ax(p)...} as follows. The forward going
sequence aoaid, ... locates p in one of the horizontal lines of A, and the backward
going sequence a..;a_; . . . locates p in one of the vertical lines of A,. For example ao =1
if peHy and ao=2 if pe H,; similarly a_, =1 (resp. 2) if pe V; (resp. V,). It can be
shown that there is precisely one such symbol sequence for each point in A. Moreover,
the sequences can be chosen to reflect the dynamics of F restricted to A(F|,), by requiring
that

{a.(F(p)} = ofa.(p)}, 34)

where o is the shift operation defined by
(o{anDic = ax+1: (35)
i.e., a shift of the sequence one place to the left (or of the decimal point one place to

the right).

The space X of two symbol sequences has a natural topology based on the fact that
two sequences {a, (p)}, {a.(q)} are 1/N close if a,(p) = a,(q) for all |n|<N. This in turn
implies that the points p and g lie within a rectangle with height »" and width w. By
using these ideas it is possible to prove that the map F|, is homeomorphic to the shift
o: 2~ 2%, and thus that an analysis of the symbolic dynamics of F via ¢ is possible. One
can use this to prove various facts (cf. reference [2]).

PROPOSITION 4. The invariant set A contains (a) a countable set of periodic orbits
of all periods, (b) an uncountable set of non-periodic motions, (c) a dense orbit, and (d)
the periodic orbits are all of saddle type and they are dense in A.

The countable set of periodic orbits follows from the fact that one can enumerate
all periodic sequences (...111-111...; ...222:222...; 1212- 1212...;
01220122 0005...112 - 112 ... ; etc.) and to each of these there corresponds a periodic
orbit of F. One can even count the periodic orbits of a given period: (b) follows because
there is still an uncountable point set left when all periodic points are removed. The set
of periodic orbits is dense because any orbit can be approximated arbitrarily closely by
a periodic orbit. A dense orbit is constructed by joining all possible finite symbol sequences
end to end. Finally, the stability of a periodic orbit {p,} of period k is given by DF* =
DF(p)DF (pi_y) ... DF(p;), and hence

+u 0 7% +u* 0

L P I 6

0 =xl/v 0 1/v" (6)

which has eigenvalues 0<|u“|<1<|1/v*|. Half (roughly) of these periodic points are
saddles of the first kind and half saddles of the second kind.

While the set A is extremely complicated and contains an uncountable infinity of

non-periodic or “‘chaotic” orbits, it is not an attractor. It can, however, exert a dramatic
influence on the behavior of typical orbits which pass close to it since the stable manifold
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W*(A), or set of orbits f"(q) asymptotic to A as n > c0, behaves like an uncountable set
of saddle separatrices. (In fact locally this stable manifold is just A,: the product of an
interval and a Cantor set.) One therefore expects orbits passing near A to display an
extremely sensitive dependence upon initial conditions, and exhibit a transient period
of chaos before perhaps setting down to a stable periodic orbit. Recall that such orbits
can co-exist with the horseshoe since only the image under f of a specially chosen domain
of the state space has been considered. However, in the next section it is argued that
even stable periodic orbits may have arbitrarily long periods, and hence may appear as
erratic as the genuinely non-periodic motions. '

5. BIFURCATION TO HORSESHOES AND CHAOTIC MOTIONS

In this section the behavior of the map f,., as y is increased for fixed & <1 is considered.
Specifically, a region Q bounded by thelines¢ =0,¢ =2m, ¢ +v=2nm ¢ +v=02n+2)7r
is fixed and chosen such that f,,(Q) lies entirely below Q; see Figure 6(a). As vy is

(a) ! T ! I (b) T T T T
1%
107 +— . A C
0 8
v -
s o' Z;l' c
8'r ¢
0 t L 1 1 1 1 1 1
0 T 2r 0 4 2
Orrey T ! 1

D —

A CA

- 54

v = -

- 4

of- ]

E 0

éd/ 1 1 It 1C

0O L4 2T

P

Figure 6. The creation of a horseshoe; a =0-5,n=3. (@) y=0; (b) y=3m=1v,;(c) y=67> vh.

increased, the center of the image of Q rises until the image of the horizontal line AC
(¢ =2n1r), given by v = av —y cos v, just touches AC at the point (¢, v) = (m, 2n7); see
Figure 6(b). This occurs when y =y, =2nm(1~a) and is, of course, the saddle node
bifurcation point for the pair of fixed points lying on v =2n7 which was found in section
2. One already knows that the sink bifurcates to a sink of period two at vy, =
2~/n272(1—a)2+(1+a)2. One can now conclude that an infinite sequence of further
bifurcations must occur between v, and yﬁ, the critical value at which the horseshoe is
created (see Figure 6(c)), since for y= yf,' there is a countable infinity of periodic orbits,
including orbits of arbitrarily long periods, in Q. The question of the order in which
these bifurcations occurs for such maps is still open and appears to depend on the
dissipation parameter a.
In the limit & - 0 the map f, , tends to the singular map

fO.y: (¢’ l))""(d)"‘l), —y COS (¢+U)), (37)




184 P. J. HOLMES

which shrinks areas to zero in one iterate. Since each line ¢ + v = ¢ is shrunk to a point
(¢, =y cosc) by fo,, one can set ¢ =0 (say) and consider the one dimensional (non-
invertible) map

v —7y cos v, (38)

which takes an interval, stretches and folds it repeatedly, and maps it into [—v, y]. Near
any maximum this resembles a quadratic map of the form

vy —0°/2, (39a)
or, equivalently,
v ol —v), (39b)

which has been studied extensively and shown to exhibit startlingly complex behavior,
including countable sequences of period doubling bifurcations (cf. the publications of
Stefan [25], Guckenheimer [26], Collet, Eckmann and Lanford [27], and Collet and
Eckmann [28}). However, the work of Newhouse [24, 29] and of Gavrilov and Silnikov
[30] (cf. the article by Greenspan and Holmes [15]) implies that the typical behavior
for the two dimensional diffeomorphism (a # 0) is yet more complex, since such maps
can possess countably infinite sets of stable periodic orbits for selected parameter values
in addition to the saddle type orbits discussed in section 4, while one dimensional maps
such as mapping (38) can have at most finite sets of stable periodic orbits (a map with
a single maximum, such as mapping (39), can have at most one stable orbit for each
parameter value [28]).

The studies contained in the literature cited above do not provide a complete charac-
terization of the bifurcation behavior in each “n band” as y varies between v, and yf:,
but they do show that stable periodic motions of arbitrarily long period are created in
saddle-node bifurcations and subsequently double their periods repeatedly as y increases.
Thus, stable orbits with periods longer than any preassigned period can be found; such
orbits are indistinguishable in practice from the bounded non-periodic motions of the
horseshoe, but their stability renders them observable. Newhouse [29] has suggested
that such orbits may constitute the hypothetical *‘strange attractor” observed by Hénon
[31] and many others in numerical iterations of two dimensional maps.

In the present case numerical iterations of equation (5) reveals similar complex orbits.
Figure 7 shows a sequence of phase portraits (= orbits) for a (= 0-8) fixed and several
values of y. The stable sink of (a) has bifurcated to an orbit of period two in (b) and
successively more complex orbits are seen in {(c) and (d). In each case the initial conditions
were chosen to be near v = 27, and, while the orbit remains close to the # = 1 band for
low values of y (see (a) and (b)), for higher values it leaves the band and wanders
erratically over a bounded subset of the state cylinder before setting down to a stable
orbit (c), or apparently continues to wander (d). In (c) 500 iterates were required before
the asymptotic behavior became clear; in (d) 5000 iterates were computed. Note that
the orbits of (c) and (d) do not correspond to physical motions of the bouncing ball since
the departure velocity V becomes negative. These chaotic motions are, however, of
considerable mathematical interest.

Figure 8 illustrates the condition necessary (but not sufficient) for this wandering to
occur. It shows partial boundaries of the domain of attraction of the period one sink in
the n =1 band formed by the stable manifolds of the associated saddle point. Finite
segments of these manifolds are easily computed by iterating a short interval of the
stable eigenvector of the linearized map (7) containing the saddle point, under the inverse
map (6). The unstable manifold may similarly be found by iterating an interval of the
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Figure 7. Orbits of f, ,; a =0-8. O, Initial condition, A, asymptotic limit of orbit. The n =1 period two
motion appears for y=3-813022. {a) y=3; (b) y =4; (¢) y=35; (d) y =10. No periodic limit apparent after
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Figure 8. Stable and unstable manifolds of the n = 1 saddle point. The n =1 sink is denoted by A. (a)y=2;
(b) v =3; (c) y = 3-28: first tangency; (d) y = 3-5: transverse homoclinic orbits,
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unstable eigenvector under the map (5) (cf. [32]). When transverse intersections of stable
and unstable manifolds exist, as in Figure 8(d), it is very difficult to predict the asymptotic
behavior of an orbit unless the initial conditions are known extremely accurately, since
any two orbits starting on different sides of the stable manifold will ultimately separate
exponentially fast. The violent winding of this manifold implies that the domains
of attraction have complicated boundaries with infinitely many long thin ‘‘tongues”
penetrating close to other attracting orbits (cf. reference [32]).

Note that intersections of manifolds in the » = 1 band occur for values of vy for which
the sink at (@1, §;) = (arccos (27 (a —1)/v), 27) is still stable, and far below y'f, the value
at which the n =1 horseshoe appears. However the global bifurcation occurring when
the manifolds are tangeunt (Figure 8(c)) reproduces “‘in miniature” all the behavior
associated with the creation of horseshoes of Figure 6. Consider the simplified sketch
of the manifolds in Figure 9. One can select a small rectangle, QV, such that, for some

")

/ B
Successive images -
of OV /
Zm

-

ON

. " . . N
Figure 9. The creation of mini-horseshoes for f, ,.

fixed iterate N of the map, fn,(Q") lies as shown respectively before (a), at (b) and
after (c) the tangency (cf. references [15, 24, 29, 30]). Thus, on a suitably chosen rectangle,
ff_,, has horseshoes once transverse homoclinic points exist. The stable manifolds belong-
ing to the countable set of saddle type orbits within these horseshoes wind around close
to the stable manifolds of the saddle point shown in Figure 8(d), further complicating
the structure of the domain of attraction. By taking all integers M > N, countably many
such rectangles @™, each with its horseshoe, can be found, so that even if a low period
stable orbit exists somewhere in the phase space, and initial conditions are chosen in its
domain of attraction, the orbit may behave in a chaotic manner for a long time before
finally “settling down’’ to the periodic attractor. In a similar map Lieberman has noted
instances of apparent chaos for as many as 50 000 iterates before the appearance of a
stable period three motion [33]. In view of this, the complex orbits of figures 7(c) and
(d) are not surprising.

In the present problem, as in many others (cf. references [11, 12, 15, 31]) there appear
to be parameter values for which orbits are never asymptotic to periodic attractors.
Figure 10(a) is an illustration of such an orbit, which had not displayed any recognizable
asymptotic behavior after 60 000 iterates. Note, however, that the orbit does exhibit a
striking global structure in that it appears to fall on a set of curves. Magnification of
regions of the phase space suggest that, as in Hénon’s work [31], this set is not finite |
(Figure 10(b)), but is locally the product of a smooth curve and a Cantor set. This is
precisely the structure of the closure of the unstable manifolds of the horseshoes, or,
indeed, of the periodic orbits within them. (Locally, this is just the set A, described in
section 4.) In Figure 10(c) a portion of the unstable manifold of the saddle point at
(¢, v)=(m/2, 0} is shown. Comparing this with Figure 10(a) makes it clear that the orbit
seems to approach or to lie on this manifold. In fact if the bounded set A = {¢, v||v| <8}
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Figure 10. The “‘strange attractor”. (a) 60 000 iterates of a point near (w/2,0); (b) enlargement of part of
(a); (c) the unstable manifold of (m/2, 0).

is taken in this case (a =0-5, y=10) it can be shown by the methods of section 2
(equation (9)) that fay(A) is contained in A. Moreover, the attracting set A defined as
the intersection of all forward images of A,

A= () fir(A) (40)

is equal to the closure of the unstable manifold of the saddle point at (7/2,0). This
attracting set may, however, contain stable periodic orbits whose domains of attraction
are so thin and contorted that they are effectively unobservable due to numerical errors
(cf. reference [15], section 6.3).

This “‘strange attractor” coexists with a stable orbit of period two in the n =3 band
near the fixed point at (¢, 0) = (arccos (67 (a — 1)/7), 67); see Figure 10(a). The domain
of attraction of this motion winds back and forth in the “gaps’’ in the other attractor.

6. CONCLUSIONS AND PHYSICAL IMPLICATIONS

Although the complex motions discussed in the preceding section, and the bifurcations
leading to them, are not fully understood one can draw some useful physical conclusions
from this incomplete anatysis.

The existence of horseshoes in the bands above v =0, both on a global scale, as shown
in section 3, and in miniature, as shown in section 5 (Figure 9) implies that countably
infinite sets of unstable periodic motions of arbitrarily long period as well as non-periodic
motions exist, provided that y exceeds a certain limit, which can be estimated as in
section 3 or easily found numerically, by looking for intersections of manifolds, as in
section 5. Moreover Newhouse’s work implies that, for a residual set of parameter values
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near those at which tangencies of manifolds occur, there are countable sets of stable
periodic motions of arbitrarily long period, while finite sets of such motions exist for
open sets of parameter values. These observations together imply that stable (observable)
motions of almost any degree of irregularity occur, since one can find periodic attractors
whose periods exceed any specified number of iterates. Moreover, the size, shape and
mutual interweaving of the domains of attraction of any such periodic motions implies
that orbits will exhibit an extremely sensitive dependence on initial conditions, even
when they do eventually approach a simple low period orbit.

As noted in section 5, the stable high period orbits cannot always be realized numeri-
cally, and thus may also be physically unobservable. Instead, one can expect to see
sustained, bounded, chaotic motions of the ball, which have their mathematical analogue
in bounded non-periodic orbits which remain above v = 0. This goes some way towards
explaining the experimental results of Wood and Byrne [1] mentioned in section 1.

A number of other impact governed problems, such as that of mechanical linkages
with free play, are described by models similar to the present one. One therefore expects
to observe chaotic responses to deterministic (periodic) excitations in those cases also.
Since such mechanisms play an important role in the generation of industrial noise and
vibration [1], it is of interest to study their dynamics both from a geometrical viewpoint,
as in this paper, and from a probabilistic viewpoint. In reference [1], probability density
functions for departure velocity V(1) were computed for given (Gaussian) excitations
W(t). An examination of Figure 10(a) suggests that an “‘effective density function” might
be sought for the present, deterministic case, since the motion is effectively random, the
initial condition being rapidly “forgotten” due to the exponential separation of neighbor-
ing orbits. Recently some work has been done in this area for the dissipative Chirkov-
Taylor map, which is identical to equation (5) under a simple lincar change of co-ordinates.
The interested reader should refer to the papers of Jensen and Oberman [34, 35] and
the references therein.
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