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Abstract—The use of random finite sets (RFSs) in simulta-
neous localization and mapping (SLAM) for mobile robots is a
new concept that provides several advantages over traditional
vector-based approaches. These include: 1) the incorporation of
detection statistics, as well as the usual spatial uncertainty, in an
estimation algorithm, 2) the ability to estimate the number of
landmarks in a map, and 3) the circumvention of the need for
data association heuristics. Solutions to SLAM can be obtained
through the Rao-Blackwellized Probability Hypothesis Density
(RB-PHD) filter, which is an approximation of the Bayes filter for
RFSs using both particles to represent the robot trajectories, and
Gaussian mixtures to represent their associated maps. This paper
proposes an improved multi-feature particle weighting strategy
for the RB-PHD filter and shows through simulations that it
outperforms existing weighting strategies. The proposed strategy
makes the RB-PHD filter a generalization of multi-hypothesis
(MH) FastSLAM, a vector-based SLAM solution that uses the
RB-particle filter.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a prob-
lem in robotics in which a robot uses its available sensor
measurements to estimate a map of the operating environment,
while concurrently determining its pose relative to the map.
Stochastic filtering and batch estimation are two general
approaches for solving SLAM problems. In both cases, the
general practice adopted by the robotics community uses
random vectors to represent the robot and map state [1].

Recently, a different representation has been introduced for
feature-based maps using random finite sets (RFSs) [2], in
which, random vectors for individual features (or landmarks)
are placed in a set instead of being concatenated into a single
vector (as in the vector-based approach). The cardinality of the
set is also a random variable. This approach has been used in
multi-target tracking [3], and has since been adapted in both
single vehicle [4] and multi-robot mapping problems [5].

The benefits of using a RFS-based filtering approach to
SLAM are that: a) Data associations (or the correspondence
between measurements and state) do not have to be explicitly
determined using heuristics before the application of Bayes
theorem; b) RFS-based filtering naturally accounts for de-
tection statistics (i.e., the probability of detection of features
and clutter); c) The RFS approach estimates both the spatial
position of landmarks, as well as the number of landmarks
that have been observed by on-board sensors.

Finite set statistics (FISST) is a set of tools developed by
Mahler [6] that use RFSs for handling multi-target estimation
problems. It includes the generalization of the Bayes filter for
use with RFSs. A computationally tractable approximation of
the filter can be achieved by using a first statistical moment
approximation of a RFS, which is its probability hypothesis
density (PHD) or intensity. This approximation of the Bayes
filter is called the PHD filter.

In adapting the Gaussian mixture (GM)-PHD filter [7]
for SLAM, Mullane et al. [8] introduced the the Rao-
Blackwellized (RB)-PHD filter, which is based on the RB-
particle filter (PF). In this filter, the robot trajectory estimate
is represented by particles, while the per-particle map is
estimated using the PHD filter. This is similar to the vector-
based RB-PF approach known as FastSLAM [9], which uses
the Extended Kalman filter (EKF) for map updates.

In any PF [10], it is necessary to assign importance weight-
ings to particles so that they can be re-sampled. However,
the evaluation of the weighting term in the RB-PHD can be
calculated with an arbitrary set of map features. To the best
knowledge of the authors, all implementations of RB-PHD
SLAM have only used the empty-set or the single-feature
strategies for importance weighting. The purpose of this paper
is to demonstrate the concepts, advantages, and computational
consequences of implementing a multi-feature strategy, which
is more robust to sensor noise and clutter by taking into
account the measurement likelihoods to multiple features. This
in turns allows the RB-PHD filter to provide better trajectory
and map estimates in comparison to the empty-set and single-
feature strategies. Furthermore, we show that using the RB-
PHD filter with the multi-feature strategy is a generalization of
vector-based RB-PF solutions that use single-hypothesis (e.g.,
FastSLAM [9]) or MH data association (e.g., MH-FastSLAM)
[11].

We will begin in section II by providing the formulation and
review of RB-PHD SLAM. In section III, we will examine
the existing weighting strategies and derive our proposed
multi-feature strategy. Furthermore, we will show that it is
a generalization of vector-based approaches that use the RB-
PF. In section IV, we verify the performance of our proposed
approach with simulations and make comparisons with multi-
hypotheses FastSLAM.



II. RFS-BASED SLAM FORMULATION USING THE
RB-PHD FILTER

A. System Model

SLAM is a state estimation problem in which we seek the
best estimate of the robot trajectory and map feature positions
over time by using all sensor measurements. In general, we
can represent the underlying stochastic system using the non-
linear discrete-time equations:

xk = g (xk−1,uk, δk) (1)

zik = h
(
xk,m

j , εk
)

(2)

where
xk represents the robot pose at time-step k,
g is the robot motion model,
uk is the the odometry measurement at time-step k,
δk is the process noise at time-step k,
zik is the i-th measurement vector at time-step k
h is the sensor-specific measurement model,
mj is a random vector for the position of landmark j,
εk is the measurement noise

Traditional vector-based approaches to SLAM concatenate
random vectors for the robot and landmarks into a single vec-
tor for the estimation process. Further, the generally complex
data association problem needs to be solved so that i and j
correspond to the same landmark. With the RFS approach, we
define the observed landmarks up to time-step k as

Mk ≡
{
m1,m2, . . . ,mm

}
, (3)

where the number of landmarks, |Mk| = m, is also a random
variable. In general, the landmark from which a measurement
is generated is unknown. Furthermore, there is a probability of
detection, PD, associated with every landmark measurement.
Measurements may also be clutter that are generated from
sensor noise appearing with a probability of false alarm, PF .
We define the set of all n measurements at time-step k as:

Zk ≡
{
z1k, z

2
k, . . . , z

n
k

}
(4)

Using a probabilistic framework and a filtering approach, we
seek the probability density function (PDF)

p (x0:k,Mk|Z1:k,u0:k) (5)

relative to the initial pose of the robot at every time-step.

B. The RB-PHD Filter

The posterior PDF (5) can be factored into the form:

p (x0:k|Z1:k,u1:k) p (Mk|x0:k,Z1:k,u1:k) , (6)

This is the same approach taken in [9] such that the first term
in (6) is a conditional PDF on the robot trajectory and sampled
using particles. The second term in (6) is the density of the
map conditioned on the robot trajectory, which we represent
using a GM. In the RFS-based approach, we also assume that
the map RFS has a multi-object Poisson distribution1. This

1This implies that features are independently and identically distributed,
while the number of features follow a Poisson distribution [6].

allows us to approximate the PDF of the map RFS as an
intensity function, v, represented as a GM [7]:

vk (Mk) =
∑
i

w
[i]
k N

(
µ
[i]
k ,Σ

[i]
k

)
(7)

In contrast to the vector-based RB-PF approach of using EKFs
to update the Gaussians for individual landmarks, a PHD filter
is used instead to update the map intensity function.

We will provide a brief overview of the main steps in the
RB-PHD filter [2, 8]. Our main focus is on the importance
weighting step, which we will cover in detail in Section III.

1) Particle Propagation: At time-step k, the particles rep-
resenting the prior distribution,

x
[i]
k−1 ∼ p (x0:k−1|Z1:k−1,u1:k−1) , (8)

are propagated forward in time by sampling the motion noise,
δ
[i]
k−1, and using the motion model (1) [12]:

x
[i]
k = g

(
x
[i]
k−1,uk−1, δ

[i]
k−1

)
∼ p (x0:k|Z1:k−1,u1:k) (9)

2) Generate Birth Gaussians: For each particle, its map
intensity from the previous update, v+k−1, is added with |Zk−1|
new Gaussians with (an arbitrarily small) weight, wB , accord-
ing to the PHD filter predictor equation:

v−k (Mk) = v+k−1 +

|Zk−1|∑
i

wBN
(
µ
[i]
k ,Σ

[i]
k

)
. (10)

These new Gaussians created at time-step k represent poten-
tial new landmarks in the map, with mean and covariance,
(µ

[i]
k ,Σ

[i]
k ). These are determined by using the inverse mea-

surement model from equation (2) with the previous updated
pose x

[i]
k−1, and previous measurements, Zk−1.

3) Map Update: The map intensity for each particle is
updated with the latest measurements according to the PHD
filter corrector equation:

v+k (Mk) = (1− PD) v−k +

|Zk|∑
i=1

N−
k∑

j=1

wi,j
k N

(
µ
[i,j]
k ,Σ

[i,j]
k

)
(11)

where N−k is the number of Gaussians that compose v−k .
Here the first term is a copy of v−k with lowered weights
to account for the possibility of missed detections. In this
paper, we will assume that the probability of detection, PD,
is constant to simplify the presentation of our equations,
but it can be generalized such that PD is a function of xk

and a landmark from Mk. The second term adds a new
Gaussian for each pair comprising a new measurement and
an existing Gaussian in the intensity map. In other words,
instead of determining data association based on heuristics,
we let the PHD filter determine how much a measurement
should influence a landmark estimate. This is carried out by
the weighting factor calculation:

wi,j
k =

PDw
j
kq
(
zik,N

(
µ
[j]
k ,Σ

[j]
k

))
κ(PF ) +

∑N−
k

l=1 PDw
j
kq
(
zik,N

(
µ
[l]
k ,Σ

[l]
k

)) (12)



where q() is the measurement likelihood given a feature
estimate, and κ(PF ) is the clutter density, which is a function
of the probability of false alarm. The mean and covariance for
each new Gaussian created from measurement i and landmark
j, (µ

[i,j]
k ,Σ

[i,j]
k ), are determined using the EKF update step

(Note that other variants of the Kalman filter (KF) would also
be possible).

4) Importance Weighting and Re-sampling: Particle
weighting and re-sampling are necessary to update the
trajectory estimates [12]. The method in which this is
performed is the focus of this paper, and we will explore this
in greater details in section III.

5) Merging and Pruning of the Map: Gaussians with small
weights are eliminated from the intensity function, while Gaus-
sians that are close to each other are merged together [2, 13].
This approximation is critical in limiting the computational
requirement of the RB-PHD filter.

III. IMPORTANCE WEIGHTING

The weighting and re-sampling of particles is the method
used to update the robot trajectory PDF after propagation (also
known as the proposal distribution). This is given by:

p (x0:k|Z1:k−1,u1:k) , (13)

This has to to be updated to become a new PDF representing
the robot trajectory after measurement updates (or the target
distribution),

p (x0:k|Z1:k,u1:k) . (14)

Bayes rule allows us to express the weighting distribution in
terms of (13) and (14):

p (x0:k|Z1:k−1,u1:k)

p (x0:k|Z1:k,u1:k)
= ηp (Zk|x0:k,Z1:k−1) (15)

in which η is a normalizing constant. Since (13) and (14) are
sampled using particles, the weighting distribution, which we
will define as ωk, is also sampled such that we calculate a
weight for each particle. To solve (15), we can express it as:

ωk ≡ p (Zk|x0:k,Z1:k−1)

=

∫
p (Zk|Mk,x0:k) p (Mk|x0:k,Z1:k−1,u1:k) dMk

(16)

Since the weighting distribution is sampled, we solve (16) by
using the trajectory-dependent map for each individual parti-
cle. This is relatively easy if we were dealing with Gaussian
random vectors. However, with RFSs, the computation of a
set integral is computationally infeasible. Therefore, we use
an alternate expression for (15) obtained from Bayes theorem:

ωk ≡ p (Zk|x0:k,Z1:k−1)

= p (Zk|Mk,x0:k)
p (Mk|Z1:k−1,x0:k)

p (Mk|Z1:k,x0:k)
(17)

In contrast, (17) is hard to solve with a vector-based approach,
but possible with RFSs because we assume that the map RFS is
multi-object Poisson distributed. Let m− and m+ represent the

sums of all the Gaussian weights in v−k and v+k , respectively.
The map density terms in (17) can be expressed as:

p (Mk|Z1:k−1,x0:k) ≈

∏
mk∈Mk

v−k (mk)

expm−
(18)

p (Mk|Z1:k,x0:k) ≈

∏
mk∈Mk

v+k (mk)

expm+
(19)

We note from (17) that the choice of the map, Mk,
for which we evaluate the expression in its general form
is theoretically arbitrary since the left-hand side of (17) is
independent of the map. This has led to the simplest solutions
that adopt the empty-set strategy and the single-feature strategy
in determining the particle weight in (17). However, due to the
multi-object Poisson approximations shown in (18) and (19),
which we must use to calculate particle weights in a feasible
manner, different choices of the map set can have significant
performance effects of the filter. We will show in Section IV
that the multiple-feature strategy, to be proposed in section
III-C, yields significantly better estimation results. The main
difference between the three strategies is the way in which
the measurement likelihood is evaluated. Before presenting the
multi-feature strategy and understanding how it is derived, it
is useful to review the empty-set and single-feature strategies.

A. The Empty-Set Strategy
For the empty-set strategy, Mk = ∅. All measurements are

considered to be multi-object Poisson distributed clutter, and
the likelihood term in (17) becomes:

p (Zk|Mk,x0:k) ≈

∏
zk∈Zk

c (zk | xk)

exp
∫
v (z|xk) dz

(20)

Note that in many applications, clutter is assumed to be
uniformly distributed. For presentation purposes in the rest
of this paper, and without loss of generality, let

c = c (zk | xk) , Nc =

∫
v (z|xk) dz. (21)

In this strategy, the ratio of map densities in (17) simplifies to∏
mk∈Mk

v−k (mk)

expm−
expm+∏

mk∈Mk

v−k (mk)
= exp

(
m+ −m−

)
.

(22)

Although easy to implement, this strategy performs the worst
out of the three methods, and often causes filter divergence.

B. The Single-Feature Strategy
For the single-feature strategy, Mk = m. All but one

measurement are considered clutter, and the likelihood term
in equation (17) (with a constant PD) becomes:

p (Zk|Mk,x0:k) ≈ (1− PD)
c|Zk|

expNc

+PD

∑
zk∈Zk

(
c|Zk−zk|

expNc
p (zk|m,x0:k)

)
(23)



The above expression accounts for both the cases where
the single feature is miss-detected or detected. This strategy
yields better filter performance in comparison to the empty-
set strategy, but still lacks robustness in comparison with the
multi-feature strategy which is proposed next.

C. The Multi-Feature Strategy

Our proposed weighting strategy is to select Mk such that
it includes all the estimated landmarks that currently exists in
the robot sensor’s field of view (FOV). Let us first consider the
simplest case by assuming that there are two features, Mk =
{m1,m2}. The measurement likelihood term in (17) becomes:

p (Zk|Mk,x0:k) ≈ (1− PD)
2 c|Zk|

expNc

+ PD (1− PD)
∑

zk∈Zk

(
c|Zk−zk|

expNc
p (zk|m1,x0:k)

)

+ PD (1− PD)
∑

zk∈Zk

(
c|Zk−zk|

expNc
p (zk|m2,x0:k)

)

+ P 2
D

∑
z1∈Zk

∑
z2∈Zk−z1

(
c|Zk−{z1z2}|

expNc
p (z1|m1,x0:k)

p (z2|m2,x0:k)

)
(24)

The complexity of (24) increases greatly as we select Mk

to include more landmarks. Approximations need to be made
to ensure that the multi-feature strategy is computationally
tractable. Our first approximation is valid for sensors in which
the amount of clutter is low and the probability of detection
is high. This allows us to approximate (24) using its last
term (highest order in terms of the probability of detection).
The validity of this approximation is shown in Fig. 1 from
multiple simulated 2-D environments with 5 landmarks. With
this approximation, the measurement likelihood term for an
arbitrary number of n features can be expressed as

p (Zk|Mk,x0:k) ≈
∑
Zk,Mk

s (Zk,Mk,x0:k) , (25)

where s represents the likelihood of a possible set of pairings
between all the measurements in Zk with the landmarks in
Mk. The summation over s implies that we are considering
all possible pairings. From the last term in (24), if |Zk| ≥
|Mk|, some measurements are considered clutter, and s can
be evaluated as:

s (Zk,Mk,x0:k) =
c|Zk|−Mk

expNc
p (z1|m1,x0:k)×

p (z2|m2,x0:k) . . . p
(
z|Mk||m|Mk|,x0:k

)
(26)

Where:

z1 ∈ Zk, z2 ∈ Zk − z1, zi ∈ Zk − {zj} ∀j < i

m1 ∈Mk, m2 ∈Mk −m1, mi ∈Mk − {mj} ∀j < i
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Fig. 1: The percentage error in using the highest-order term
for approximating the RFS measurement likelihood.

For the case where |Zk| < |Mk|:

s (Zk,Mk,x0:k) = p (z1|m1,x0:k)×
p (z2|m2,x0:k) . . . p

(
z|Zk||m|Zk|,x0:k

)
(27)

At this point, the computation of (25) is still computation-
ally intensive (of complexity O (|Mk|!)). Hence, we make a
second approximation by setting small values of measurement
likelihoods to zero. This effectively reduces the number of
likelihood products (i.e., (26) or (27)) that we need to sum
up. We can extend this further by selecting spatially well-
separated landmarks in Mk. This reduces that complexity of
calculating (25) to O (|Mk| |Zk|).

D. Relationship to vector-based RB-PF SLAM

It is of interest how our proposed strategy relates to
vector-based RB-PF approaches. In the traditional vector-
based approaches, we do not use negative information (of
not observing a landmark) in map updates. Furthermore, it
is assumed that the probability of detection is always equal
to one. In performing data association, measurements that do
not correspond to any landmarks are not used for updating the
map, and a measurement can only update the estimate of the
landmark to which it is associated (i.e., the likelihood of the
same measurement to any other landmark is zero). If we let
j = c(i) represent the data association of measurement i to
landmark j, the expression for the measurement likelihood for
the vector-based approach is:

p (zk|mk,x0:k) = p
(
z1k|mc(1),x0:k

)
×

p
(
z2k|mc(2),x0:k

)
. . . p

(
znk |mc(n),x0:k

)
(28)

This is a particular case of (25). To see this, we can extend
(24) to n features, remove all the clutter terms, and set the
probability of detection to one. From this we will arrive at
(25) without needing approximations. Applying data associ-
ation implies that only a single sequence of measurement to



landmark pairings (i.e., a single term of (27)) will be non-zero,
which makes (25) equivalent to (28).

We can see in (16) and (17) that the measurement likelihood
terms that appear in (27) and (28) are not the only terms
involved when we calculate particle weights. However, the
expressions of (16) and (17) are equivalent, and both are
functions of the same measurement likelihood.

In the map update step of the RB-PHD filter in (11), having
perfect data association, perfect detection, and no clutter, will
force the weighting term (12) to equal one for measurement
and feature pairs that correspond to each other, and equal zero
for all other pairings. From this and the observations above,
we can conclude that the RB-PHD filter is a generalization of
the vector-based RB-PF approach used in FastSLAM.

The generalization that we have shown also covers MH-
FastSLAM [11], in which particles are replicated for each
possible and likely data association. This is similar to the
second approximation that we make on (25), by setting low
measurement likelihoods to zero. However, instead of repli-
cating particles in the RB-PHD filter, we sum the likelihoods
of all possible and likely correspondences. This result is
proportional to the sum of all the replicated particles in the
multi-hypothesis RB-PF filter.

IV. SIMULATIONS

A. Setup

In these initial 1-D experiments (which allow us to use
linear system models and not be influenced by linearization
errors), we performed SLAM simulations and compared the
estimates produced by the RB-PHD filter using the different
importance weighting strategies. We also implemented multi-
hypothesis (MH)-FastSLAM [11] for comparison. The robot’s
motion prediction is corrupted by zero-mean Gaussian noise
on its odometry measurements. The robot also has a limited
sensing range of 5m. There are 10 landmarks that enter the
FOV of the robot sensor during its motion. All measurements
are also corrupted by zero-mean Gaussian spatial noise.

In the RB-PHD filter, 25 particles were used in each
simulation trial. Re-sampling of particles was set to occur
when the effective number of particles [12] falls below 6.25.
In the multi-feature particle weighting strategy, the map set is
chosen using the peaks of all the Gaussians in the map that are
within the sensor’s range. Measurement likelihoods that fall
below 0.01 are considered zero. For the single-feature strategy,
the one-element map set is selected using the Gaussian with
the highest weight that is within the sensor’s range.

For implementing MH-FastSLAM for comparison, we al-
lowed each particle to spawn at most 4 copies of itself using
data associations with highest likelihoods. Furthermore, we re-
sampled whenever the number of particles exceeded 125, to
prevent the number of particles from growing without bound.
To make a fair comparison, we implemented a binary Bayes
filter for tracking the probability of existence of landmarks for
map management purposes. The probability of detection and
false alarm are kept the same as the RB-PHD filter. We also
assumed that the prior probability of existence for a landmark,

PE(mi), is 0.5 when it is first observed. Let the posterior log-
odds for landmark existence be defined as:

lk ≡ log
PE(mi|Z1:k)

1− PE(mi|Z1:k)
(29)

This is recursively updated at time-step k for landmarks that
are expected to be in the sensor’s FOV:

lk = log
PE(mi|Zk)

1− PE(mi|Zk)
+ lk−1 (30)

where if mi is associated with a measurement in Zk,

PE(mi|Zk) =
(1− PD)PFPE(mi) + PDPE(mi)

PF + (1− PF )PDPE(mi)
, else

(31)

PE(mi|Zk) =
(1− PD)PE(mi)

(1− PE(mi)) + (1− PD)PE(mi)
. (32)

B. Results
We ran many simulation trials but will show the results

from trials performed at PD = 0.95 for two levels of uniform
clutter intensities, Nc = 1.0 and Nc = 2.75 (see equation
(21)). Note that due to the limited sensing range, the robot
only senses at most 4 features per time-step, hence both
clutter levels are significant. For both clutter settings, Fig. 2
shows the ground-truth trajectories, along with the trajectory
estimates obtained by the highest-weight particle for each of
the tested methods. The empty-set strategy performs worse
than dead-reckoning, and we believe that the poor performance
is attributed by the inability of the empty-set strategy to
significantly distinguish the weights between particles that
fit the measurement information well, and those that that do
not. In Fig. 3, the multi-feature strategy obtains the lowest
estimation errors for both clutter settings. MH-FastSLAM also
performs well under the low clutter setting, but it is unable
to cope with high clutter. As we shall see, this is due to its
inability to produce a useful map in high clutter.

In Fig. 4, the maps produced by the empty-set strategy
remotely resemble the real map. The maps for the single-
feature strategy are shifted for both clutter settings. We believe
that this is a consequence of basing particle weights on one
single landmark. Hence a single clutter measurement can give
high weights to particles that are far from the ground-truth
position. The multi-feature strategy produced maps that closely
resemble the true map, and is more robust towards clutter, as
only a small map offset is experienced for the high-clutter case.
Lastly, the map produced by MH-FastSLAM under low clutter
resembles the true map, but there are spurious landmarks
produced by clutter measurements. In the high-clutter case,
MH-FastSLAM breaks down and is unable to produce a useful
map. Note that the maps shown are the expected a posteriori
(EAP) maps produced by the weighted average of the map
from all particles. For MH-FastSLAM we used the probability
of existence of a Gaussian as its weight.

The feature counts estimated from each approach are shown
in Fig. 5. The multi-feature and single-feature strategies per-
forms better than the empty-set strategy in estimating the num-
ber of features. Finally, we examine the map estimation error
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Fig. 2: Robot trajectory estimates
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Fig. 3: Robot trajectory estimate errors

using a metric based on the optimal sub-pattern assignment
(OSPA) distance that measures the distance between sets [14]:

e =

√√√√√ 1

|Mg|

 min
j∈{1...|Mg|}

|Mk|∑
i=1

d2i,j + c2
∣∣∣∣ |Mg| − |Mk|

∣∣∣∣


(33)

where, Mk is the estimated map set, Mg is the ground-truth
map set, di,j is the Euclidean distance between landmark mi

and mj , and c is the cut-off distance parameter2 set at a value
of 3. To obtain Mk from a GM, we selected the means of all
the Gaussians that have a weight higher than 0.5 and rounded
their weights to the nearest integer to determine the number of
features presented by each Gaussian. The error, e, increases as
the spatial estimate of landmarks increase, and as the landmark
count error increases. The results in Fig. 6 show that overall,

2c weighs feature count error against spatial error in the map estimate.

the multi-feature strategy achieves a lower map error compared
to the other methods. Although not shown, we have observed
that the multi-feature strategy performs better than the other
methods when PD is decreased, and only begins to experience
significant map errors when PD is less than 0.7 for the low
clutter case, and 0.85 for the high clutter case. In comparison,
the other methods start failing at a higher PD.

V. CONCLUSIONS

In this paper, we examined an approach to RFS SLAM
that approximates the Bayes filter with the RB-PHD filter. We
proposed an improved weighting strategy for this filter, which
in simulation, proves to be more robust and performs better in
providing more accurate estimates overall. We also examined
the mathematics behind the proposed strategy, and discovered
that it is a generalization of FastSLAM and MH-FastSLAM.
As a continuation of this work, we are currently examining
ways of improving the computational speed for the proposed
weighting method, and working on evaluating our approach
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(a) Empty-set strategy map, Nc = 1.00
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(b) Empty-set strategy map, Nc = 2.75
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(c) Single-feature strategy map, Nc = 1.00
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(d) Single-feature strategy map, Nc = 2.75
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(e) Multi-feature strategy map, Nc = 1.00
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(f) Multi-feature strategy map, Nc = 2.75
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(g) MH-FastSLAM map, Nc = 1.00
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(h) MH-FastSLAM map, Nc = 2.75

Fig. 4: Map intensities produced by each weighting strategy and by MH-FastSLAM. There are two landmarks near x = 10.
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Fig. 5: Feature count estimates
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Fig. 6: Map errors based on the OSPA distance metric

with experimental data from a real robot.
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